A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
<h3>What is acceleration?</h3>
Acceleration is the change in velocity over time.
A plane is flying initially at 100 m/s (u) and it accelerates to 150 m/s (v) in 10 s (t). We can calculate its acceleration using the following expression.
a = v - u / t = (150 m/s - 100 m/s) / 10 s = 5 m/s²
A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1
Answer:
Explanation:
If two forces act on an object in the same direction, the net force is equal to the sum of the two forces.
<h2>
a)Acceleration due to gravity on the surface of the Sun is 274.21 m/s²</h2><h2>b)
Factor of increase in weight is 27.95</h2>
Explanation:
a) Acceleration due to gravity

Here we need to find acceleration due to gravity of Sun,
G = 6.67259 x 10⁻¹¹ N m²/kg²
Mass of sun, M = 1.989 × 10³⁰ kg
Radius of sun, r = 6.957 x 10⁸ m
Substituting,

Acceleration due to gravity on the surface of the Sun = 274.21 m/s²
b) Acceleration due to gravity in earth = 9.81 m/s²
Ratio of gravity = 274.21/9.81 = 27.95
Weight = mg
Factor of increase in weight = 27.95
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.