Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
Answer:
Total worth of gold in the ocean = $5,840,000,000,000,000
Explanation:
As stated in the question above, 4.0 x 10^-10 g of gold was present in 2.1mL of ocean water.
Therefore, In 1 L of ocean water there will be,
(4.0 x 10^-10)/0.0021
= 1.9045 x 10^-7 g of gold per Liter of ocean water.
So in 1.5 x 10^-21 L of ocean water, there will be
(1.9045 x 10^-7) * (1.5 x 10^-21)
= 2.857 x 10^14 g of gold in the ocean.
1 gram of gold costs $20.44, that is 20.44 dollars/gram. The total cost of the gold present in the ocean is
20.44 * (2.857 x 10^14)
= $5,840,000,000,000,000
<span>The right answer is D. In a situation where the sound wave reaches the ear and the reflected wave reaches the ear less than 0.1 seconds later, the individual would not be able to hear an echo. There needs to a far more significant delay between the sound and the reflection of said sound reaching the listener's ear for the echo effect to become apparent.</span>
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
Answer:
The combination of nuclei to form a bigger and heavier nucleus is known as Fussion. The consequence of fusion is the absorption or release of energy.