Part 1: Potassium, and Rubidium.
Part 2: Calcium has 20 protons and 20 electrons because the atomic number for calcium is 20 and that determines how many protons there are and in an atom, the number of protons is the same number of electrons. Calcium has about 20 neutrons. I got the number of Neutrons by subtracting the mass number(40.078) and the atomic number(20), I got 20.078. Round to the nearest whole number because you cannot have half or partial neutron. So, Calcium has 20 protons, 20 electrons, and 20 neutrons,
Hope this helps and please mark as brainliest!
Volume=Mass over density. V= 220/55. V=4cm^3
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below are the choices that can be found elsewhere:
a. [CH3NH-] * [OH-] / [CH3NH3+]
<span>b. [CH3NH3+] / ([CH3NH2] * [OH-]) </span>
<span>c. [CH3NH3+] * [OH-] / [CH3NH2] </span>
<span>d. [CH3NH3+] * [OH-] / [CH3NH2] * [H2O]
</span>
The answer is C.
Molar mass Na2CO3 = 106 g/mole
Using dimensional analysis:
0.787 moles Na2CO3 x 106 g/mole Na2CO3 = g Na2CO3
Answer = 83.4 g Na2CO3
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
![K_{sp} =\text{[Ag$^{+}$][IO$_{3}$$^{-}$]} = s\times s = s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%20%3D%20s%5Ctimes%20s%20%3D%20%20s%5E%7B2%7D%20%3D%203.0%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%20%3D%20%5Csqrt%7B3.0%5Ctimes%2010%5E%7B-8%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%201.7%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctext%7B%20mol%2FL%7D)
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
![K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$$^{2-}$]} = (0.02 + s) \times s \approx 0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%20s%20%5Capprox%20%200.02s%20%3D%201.1%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B0.02%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-9%7D%20%5Ctext%7B%20mol%2FL%7D)
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
![\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%7D%20%7Bc_%7Bi%7Dz_%7Bi%7D%5E%7B2%7D%7D%5C%5C%5C%5C%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%7D%5Ccdot%20%282%2B%29%5E%7B2%7D%20%2B%20%5Ctext%7B%5BNO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%5Ctimes%28-1%29%5E%7B2%7D%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B0.02%7D%5Ctimes%204%20%2B%20%5Ctext%7B0.04%7D%5Ctimes1%29%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%280.08%20%2B%200.04%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes0.12%20%3D%200.06)
(ii) Silver iodate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
![K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5Cgamma_%7BAg%5E%7B%2B%7D%7D%24%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%24%5Cgamma_%7BIO_%7B3%7D%5E%7B-%7D%7D%24%7D%20%3D%20s%5Ctimes0.75%5Ctimes%20s%20%5Ctimes%200.75%20%3D0.56s%5E%7B2%7D%3D%203.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B3.0%20%5Ctimes%2010%5E%7B-8%7D%7D%7B0.56%7D%20%3D%205.3%20%5Ctimes%2010%5E%7B-8%7D%5C%5C%5C%5Cs%20%3D2.3%20%5Ctimes%2010%5E%7B-4%7D%5Ctext%7B%20mol%2FL%7D)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq
![K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx 0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%24%5Cgamma_%7B%20Ba%5E%7B2%2B%7D%7D%24%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%24%5Cgamma_%7B%20SO_%7B4%7D%5E%7B2-%7D%7D%24%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%200.32%5Ctimes%20s%5Ctimes%200.32%20%5Capprox%20%200.02%5Ctimes0.10s%5C%5C2.0%5Ctimes%2010%5E%7B-3%7Ds%20%3D%201.1%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B2.0%20%5Ctimes%2010%5E%7B-3%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctext%7B%20mol%2FL%7D)