Answer:

Explanation:
Since there is no friction angular momentum is conserved. The formula for angular momentum thet will be useful in this case is
. If we call 1 the situation when the student is at the rim and 2 the situation when the student is at
from the center, then we have:

Or:

And we want to calculate:

The total moment of inertia will be the sum of the moment of intertia of the disk of mass
and radius
, which is
, and the moment of intertia of the student of mass
at position
(which will be
or
) will be
, so we will have:

or:

which for our values is:

This question can be solved with the help of the equations of motion.
A) The Frisbee will remain in the air for "5.87 s".
B) The frisbee will go "29.4 m" down the range.
A)
To calculate the time, the frisbee will remain in the air, we will use the second <em><u>equation of motion</u></em>, for the vertical motion.

where,
h = height = 169.2 m
vi = initial velocity's vertical component = 0 m/s
g = acceleration due to gravity = 9.81 m/s²
t = time = ?
Therefore,

<u>t = 5.87 s</u>
<u />
B)
Now, we will calculate the horizontal range by applying the equation for constant motion. Because the velocity in the horizontal direction will remain constant due to no air resistance
s = vt
where,
s = horizontal range = ?
v= initial velocity's horizontal component = 5 m/s
t = time = 5.87 s
Therefore,
s = (5 m/s)(5.87 s)
<u>s = 29.4 m</u>
<u />
Learn more about <em><u>equations of motion</u></em> here:
brainly.com/question/9772550?referrer=searchResults
Answer:
Edison
Explanation:
Among other notable inventions, Edison and his assistants developed the first practical incandescent lightbulb in 1879 and a forerunner of the movie camera and projector in the late 1880s.
Answer:
A) Battery
Explanation:
A Battery because it holds lithium whatever stuff and we can use to power our electronics (Chemical -> electrical)
Hair dryers (electrical-> kinetic)
Television ( Electrical -> ???)
Hydroelectric plant ( Kinetic -> electrical)