1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
8

A car is initially moving at 35 km/h along a straight highway. To pass another car, it speeds up to 135 km/h in 10.5 seconds at

a constant acceleration.
(a) how large was the acceleration in m/s ^2
(b)how large was the acceleration, in units go g= 9.80 m/s ^2
Physics
1 answer:
Aleks04 [339]3 years ago
6 0
Acceleration = (velocity final-velocity initial)/ time
where
velocity final = 135 km/hr x 1 hr /3600 s x 1000m/1km
                     = 37.5 m/s
velocity initial = 35 km/hr x  1hr /3600 s x 1000 m/1 km
                      =  9.72 m/s
a) acceleration = 2.646 m/s^2
b) acceleration in g units  = (2.646m/s^2)/(9.8m/s^2)
                                              = 0.27 units

You might be interested in
. Question: 23 of 24:. Which statement is true regarding DC current?. Select one of the options below as your answer:. . A.. The
Umnica [9.8K]
"<span>There can only be one voltage supplied" is the statement among the statements given in the question that true regarding DC current. The correct option among all the options that are given in the question is the second option or option "B'. I hope the answer comes to your help.</span>
4 0
3 years ago
Read 2 more answers
What is 541.2 mg in grams
PIT_PIT [208]

Answer:

0.5142 grams.

Explanation:

I think

5 0
3 years ago
Read 2 more answers
Compute the velocity of an object orbiting at height 2Re above the surface of earth
I am Lyosha [343]

Answer:

The orbital speed can be found using v = SQRT(G*M/R). The R value (radius of orbit) is the earth's radius plus the height above the earth - in this case, 6.59 x 106 m.

3 0
3 years ago
Through what potential difference should electrons be accelerated so that their speed is 1.0 % of the speed of light when they h
omeli [17]

Answer:

Explanation:

Considering non - relativistic approach : ----

Speed of electron = 1 % of speed of light

= .01 x 3 x 10⁸ m /s

= 3 x 10⁶ m /s

Kinetic energy of electron = 1/2 m v²

= .5 x 9.1 x 10⁻³¹ x ( 3 x 10⁶ )²

= 40.95 x 10⁻¹⁹ J

Kinetic energy in electron comes from lose of electrical energy equal to

Ve where V is potential difference under which electron is accelerated and e is electronic charge .

V x e = kinetic energy of electron

V x 1.6 x 10⁻¹⁹ = 40.95 x 10⁻¹⁹

V = 25.6 Volt .

6 0
3 years ago
A rough estimate of the radius of a nucleus is provided by the formula r 5 kA1/3, where k is approximately 1.3 × 10213 cm and A
Sphinxa [80]

Answer:

Density of 127 I = \rm 1.79\times 10^{14}\ g/cm^3.

Also, \rm Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

Explanation:

Given, the radius of a nucleus is given as

\rm r=kA^{1/3}.

where,

  • \rm k = 1.3\times 10^{-13} cm.
  • A is the mass number of the nucleus.

The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

\rm \rho = \dfrac{M}{V}=\dfrac{M}{\dfrac 43 \pi r^3}=\dfrac{M}{\dfrac 43 \pi (kA^{1/3})^3}=\dfrac{M}{\dfrac 43 \pi k^3A}.

For the nucleus 127 I,

Mass, M = \rm 2.1\times 10^{-22}\ g.

Mass number, A = 127.

Therefore, the density of the 127 I nucleus is given by

\rm \rho = \dfrac{2.1\times 10^{-22}\ g}{\dfrac 43 \times \pi \times (1.3\times 10^{-13})^3\times 127}=1.79\times 10^{14}\ g/cm^3.

On comparing with the density of the solid iodine,

\rm \dfrac{Density\ of\ ^{127}I}{Density\ of\ the\ solid\ iodine}=\dfrac{1.79\times 10^{14}\ g/cm^3}{4.93\ g/cm^3}=3.63\times 10^{13}.\\\\\Rightarrow Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.

7 0
3 years ago
Other questions:
  • Can u guys help me plz thx
    5·1 answer
  • suppose the spring in the sample problem is replaced with a spring that stretches 36 cm from its equilibrium position
    14·1 answer
  • Calculate the acceleration due to gravity on venus. the radius of venus is about 6.06 x 106 m and its mass is 4.88 x 1024 kg.
    11·1 answer
  • The brightness of a star depends on its (color, composition of atmosphere, or distance from earth), and stars that are closer lo
    12·2 answers
  • A 45.5-turn circular coil of radius 4.85 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0
    5·2 answers
  • What is the average velocity of a rocket that travels 15 m in 0.25 seconds?​
    9·1 answer
  • What is the momentum of a 0.5 kg ball which is thrown at 20 m/s?
    12·1 answer
  • A space rover weighs less on Mars than it does on Earth. Which statement explains this difference? A. The gravitational constant
    10·1 answer
  • Why do you think a “reliable, scholarly” source is always stressed in academic writing?
    10·1 answer
  • The wavelengths of visible light vary from about 300 nm to 700 nm. What is the range of frequencies of visible light in a vacuum
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!