Oxygen is diatomic, so its degree of freedom, (f1)= 5,
also its number of moles, n1= 1
Helium is monoatomic, so its degree of freedom (f2)= 3
and its number of moles given is, n2=2
Now using formula of effective degree of freedom of mixture, (f), we have:
f= (f1n1+f2n2)/(n1+n2)
= (5*1 + 3*2)/ (1+3)
=11/3
Also, from first law of thermodynamics;
U= n Cv. T = nRT(f2)
or, Cv = R. (f/2) (n & T cancel)
We know f=11/6,
substituting the value in above relation, we have:
Cv= R. 11/3*2
= R. 11/6
Also, Cp-Cv = R
or, Cp- R.(11/6)= R
or, Cp= R(11/6 )+1
= 17/6 R
Therefore, Cp/Cv = 17/11
It will be moving at high speeds
Range, Belt.
Just got it right on e,,d,,g,,e
What the equation given?
- x(t)=Acos
t
Maximum velocity occurs at the equilibrium position
So
Now
Now
As we know the formula

These expressions can be used
By definition, the work done by a force is given by:

Where,
F: magnitude of force
d: distance traveled.
Substituting values we have:
Answer:
the work w1 done on the block by the force of magnitude f1 = 60.0 n is:
W1 = 2.40 J