<u>Answer:</u> The reaction proceeds in the forward direction
<u>Explanation:</u>
For the given chemical equation:

Relation of
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 
R = Gas constant = 
T = temperature = ![35^oC=[35+273]K=308K](https://tex.z-dn.net/?f=35%5EoC%3D%5B35%2B273%5DK%3D308K)
= change in number of moles of gas particles = 
Putting values in above equation, we get:

is the constant of a certain reaction at equilibrium while
is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of
for above equation follows:

We are given:



Putting values in above equation, we get:

We are given:

There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium
As,
, the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction
Answer:
Calculate the pH of 0.010 M HNO2 solution. The K, for HNO2 is 4.6 x 104
Answer: pH = 2.72
Density equals mas divided by volume. You know the density and mass so use it to solve for the volume.
d= m/v
d= 19.3 g/mL
m= 50g
v=?
Plug it in. 19.3= 50/v
To solve for v you do the opposite of 50 divided by v which is 50 time v.
That cancels v from the right side of the equation. Do the same on the other side(times v)
19.3 * v=50
Now just divide both sides by 19.3 to get v alone.
- Heat energy<span> is the result of the movement of tiny </span>particles<span> called atoms, molecules or ions in solids, liquids and gases. </span>Heat energy can<span> be transferred from one </span>object<span> to another, and the ... It is everything in the universe – anything that has both </span>mass<span> and </span>volume<span> and takes up ... An </span>effect<span> of heat – expansion.</span>
Answer:
The correct answer is - (4) 1s2 2s2 2p5 3s2
Explanation:
An excited state is a state when the valence electron has moved to some other higher energy orbital, from its ground state orbital. The ground state has a lower energy level or sublevel. In this case, the higher energy level orbit fills before the lower energy level.
In option 4, the last electron is filled in higher energy orbit 3s2 before filling the lower or ground energy level 2p5, in the ground state it would be 1s2 2s2 2p6 3s1 instead of 1s2 2s2 2p5 3s2.
Thus, the correct answer is option 4.