Answer:- HBr is limiting reactant.
Solution:- The given balanced equation is:

From this equation, There is 2:6 mol or 1:3 mol ratio between Al and HBr. Since we have 8 moles of each, HBr is the limiting reactant as we need 3 moles of HBr for each mol of Al.
The calculations could be shown as:

= 24 mol HBr
From calculations, 24 moles of HBr are required to react completely with 8 moles of Al but only 8 moles of it are available. It clearly indicates, HBr is limiting reactant.
Two changes would make this reaction reactant-favored
C. Increasing the temperature
D. Reducing the pressure
<h3>Further explanation</h3>
Given
Reaction
2H₂ + O₂ ⇒ 2H₂0 + energy
Required
Two changes would make this reaction reactant-favored
Solution
The formation of H₂O is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature rises, the equilibrium will shift towards the endothermic reaction, so the reaction shifts to the left towards H₂ + O₂( reactant-favored)
And reducing the pressure, then the reaction shifts to the left H₂ + O₂( reactant-favored)⇒the number of coefficients is greater
Answer:
Explanation:
If the reaction is really exothermic (and it is) then the water would spatter all over the place. It would boil off if the container could hold it. It would also react according to the following reaction.
You are talking about a reaction like
2K + 2HOH = 2KOH + H2
Using a calculator:
(2.568 x 5.8)/4.186 = 3.5581460…
= 3.56 (3sf)
You didn’t specify the correct number of significant figures needed.