44.0095 you're welcome hope this helps
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
Answer: The elements with properties intermediate between those of metals and nonmetals are called semimetals (or metalloids).
Limitations of Van der waal's equation. (i) The value of 'b' is not constant but varies with pressure and temperature. (ii) The value of is not equal to 3b, but actually it is equal to, in some case; and in other cases 2b. (iii) The value of is not equal to but it is usually more than 3 for most of the gases.
0.000169 mol/g citric acid