Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.
Explanation:
Exothermic reaction are those in which heat releases during a reaction
Answer:
a ) option 2 is correct
b) -ve acceleration for upward motion ,0 acceleration at top point ,+ve acceleration on downward motion ...
Explanation:
mark me as brainliest ❤️
Answer:
Explanation:
The moving charged particles in an electric current are called charge carriers. In metals, one or more electrons from each atom are loosely bound to the atom, and can move freely about within the metal. These conduction electrons are the charge carriers in metal conductors.
The flow of electrons in a direction is known as electric current. The tendency of attraction between the positive and negative charges makes electric current flow through a wire
All of the factors that need to be considered when determining an object's terminal velocity are the object's weight and area it presents, as well as air density.
<em>option </em><em>C </em><em>is the correct answer</em>
<h3>What is terminal velocity?</h3>
Terminal velocity is obtained when the speed of a moving object is no longer increasing or decreasing. That is the object's acceleration (or deceleration) is zero.
Mathematically, the formula for terminal velocity is given as;
V = √(2mg)/(ρAC)
where;
- m is the mass of the falling object
- g is the acceleration due to gravity
- ρ is the density of the fluid through which the object is falling
- A is the projected area of the object
- C is the drag coefficient
Thus, the variables to consider in determining terminal velocity of an object incudes the area, density of air, mass, etc.
Learn more about terminal velocity here: brainly.com/question/25905661
#SPJ1