Answer:
Explanation:
Given
mass of boy 
mass of girl 
speed of girl after push 
Suppose speed of boy after push is 
initially momentum of system is zero so final momentum is also zero because momentum is conserved




i.e. velocity of boy is 2.82 m/s towards west
Your answer is infrared, visible, ultraviolet.
the electric conductivity of gold is very high
Answer: 10.58 C has flowed during the lightning bolt
Explanation:
Given that;
Time of flow t = 1.2 × 10⁻³
perpendicular distance r = 21 m
Magnetic field B = 8.4 x 10⁻⁵ T
Now lets consider the expression for magnetic field;
B = u₀I / 2πr
the current flow is;
I = ( B × 2πr ) / u₀
so we substitute
I = ( (8.4 x 10⁻⁵) × 2 × 3.14 × 21 ) / 4π ×10⁻⁷
= 0.01107792 / 0.000001256
= 8820 A
Hence the charge flows during lightning bolt will be;
q = It
so we substitute
q = 8820 × 1.2 × 10⁻³
q = 10.58 C
therefore 10.58 C has flowed during the lightning bolt
Answer:
Y = 3.87 x 10⁻³ m = 3.87 mm
Explanation:
This problem can be solved by using Young's double-slit experiment formula:

where,
Y = fringe spacing = ?
L = slit to screen distance = 2 m
λ = wavelength of light = 580 nm = 5.8 x 10⁻⁷ m
d = slit width = 0.3 mm = 3 x 10⁻⁴ m
Therefore,

<u>Y = 3.87 x 10⁻³ m = 3.87 mm</u>