Based on my information, this would actually be representing
"the average kinetic energy of water particles". So, as you take notice that where this temperature is being located, and also, how this would be

°C, this would make more sense for this to be representing as <span>the
average kinetic energy of water particles.</span>
ANSWER - (1) are constantly moving (2) have volume (3) have intermolecular forces (4) undergo perfectly elastic collisions (5) have an average kinetic energy proportional to the ideal gas’s absolute temperature
You're talking about a grain of sand or a stone or a rock that's drifting in space, and then the Earth happens to get in the way, so the stone falls down to Earth, and it makes a bright streak of light while it's falling through the atmosphere and burning up from the friction.
-- While it's drifting in space, it's a <em>meteoroid</em>.
-- While it's falling through the atmosphere burning up and making a bright streak of light, it's a <em>meteor</em>.
-- If it doesn't completely burn up and there's some of it left to fall on the ground, then the leftover piece on the ground is a <em>meteorite</em>.