Answer:
make it go faster
Explanation:
because of the arrow danmaicts of the force the wind give more speed
The third one sliding friction
Explanation:
With constant angular acceleration
, the disk achieves an angular velocity
at time
according to

and angular displacement
according to

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

b. Under constant acceleration, the average angular velocity is equivalent to

where
and
are the final and initial angular velocities, respectively. Then

c. After 1.00 s, the disk has instantaneous angular velocity

d. During the next 1.00 s, the disk will start moving with the angular velocity
equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle
according to

which would be equal to

Answer:
340.67 kgm²/s
Explanation:
R = Radius of merry-go-round = 1.9 m
I = Moment of inertia = 209 kgm²
= Initial angular velocity = 1.63 rad/s
m = Mass of person = 73 kg
v = Velocity = 4.8 m/s
Initial angular momentum is given by

The initial angular momentum of the merry-go-round is 340.67 kgm²/s
Answer: The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another.
Explanation: