<span>Answer: B. Ionic solids have higher melting points than molecular solids.
</span>
This is because the rest are false, as solids are able to melt, and do have melting points. Also, not all solids have the same melting points. 
        
             
        
        
        
A fast-flowing river would most likely be to move the skaters glide around the rink b<span>y lifting it up and carrying it downstream. In a fast-flowing river, the pressure is strong, which makes it easier for sand-sized particles of sediments to be carried or transferred. Hope this answer helps.</span>
        
             
        
        
        
Answer:
The moon to the direct right of the Earth relative to the Sun
Explanation:
 
        
             
        
        
        
Answer:
Conversion factor;
Molar mass;
Avogadro's constant and molar mass
Explanation:
- Firstly, an intermediate step is to define the conversion factor that will be then used in a conversion technique called dimensional analysis in order to convert from one unit to another. An example of a conversion factor would be, for example, 1 L = 1000 mL, which can be manipulated as a fraction, either  or or ; ;
- Secondly, in order to convert mass to moles, we need to know the molar mass of a compound which has a units of g/mol (that is, it shows how many grams we have per 1 mole of substance.
- Thirdly, Avogadro's constant,  tells us that there is tells us that there is number of molecules or atoms in 1 mole of substance. We need two conversion factors to convert the number of molecules to a mass: firstly, we need to convert the number of molecules into the number of moles using Avogadro's constant and then we need to use the molar mass to convert the moles obtained into mass. number of molecules or atoms in 1 mole of substance. We need two conversion factors to convert the number of molecules to a mass: firstly, we need to convert the number of molecules into the number of moles using Avogadro's constant and then we need to use the molar mass to convert the moles obtained into mass.