We will use this two reaction equation:
H2SO3 + H2O ↔ H3O+ + HSO3- Ka1 = 1.3 x 10^-2
HSO3- + H2O ↔ H3O+ + SO3 2- Ka2= 6.3 x 10^-8
we will use the ICE table for the first equation:
H2SO3 + H2O ↔ H3O+ + HSO3-
initial 0.025 0 0
change -X +X +X
Equ (0.025-X) X X
Ka1 = [H3O+] [HSO3-] / [H2SO3]
1.3 x 10^-2 = X^2 / (0.025 - X) by solving for X
∴ X = 0.0127
when [H3O+] = X
∴[H3O+] = 0.0127 M
and when [HSO3-] = X
∴[HSO3-] = 0.0127 M
and when [H2SO3] = 0.025 - X
∴[H2SO3] = 0.025 - 0.0127
= 0.0123 M
when Kw = [OH-][H3O+]
and Kw = 1.1 x 10^-14 / 0.0127
∴[OH-] = 1.1 x 10^-14 / 0.0127
= 8.66 x 10^-13 M
- by using the ICE table for the second equation:
HSO3- + H2O ↔ H3O+ + SO3 2-
initial 0.0127 0.0127 0
change -X +X +X
Equ (0.0127-X) (0.0127+X) X
when Ka2 = [SO32-] [H3O+] / [HSO3-]
by substitution:
6.3 x 10^-8 = X(0.0127+X) / (0.0127-X)
as the Ka2 is so small so we can assume that (0.01271 + X) & (0.01271-X) = 0.01271 and neglect X
6.3 x 10^-8 = 0.0127X /0.0127
∴X = 6.3 x 10^-8
when [SO3 2-] = X
∴[SO32-] = 6.3 x 10^-8
Electronegativity
The tendency of an atom to pull electrons towards itself is called electronegativity.
It is the tendency of an atom to attract bonding pair of electrons towards itself. These atoms which are more electronegative are able to bear a negative charge and be stable.
Unlike electropositive elements which tend to lose electrons , electronegative elements hold on tightly to the electrons.
The electronegativity is measured using the Pauling Scale where the most electronegative element of the periodic table, Fluorine , is given a value of 4 and the rest of the elements have values lower than 4 according to the trends followed by their groups and periods.
The least electronegative element of the periodic table , Cesium has a value of 0.7 on the Pauling Scale.
Electronegativity increases when we move from left to right in the periodic table and it decreases (in general) when we move down the group.
(To know more about Electronegativity: https://brainly.in/question/5742635 )
Answer:
because the bones in the arm often pivot just like a lever does.
While metallic bonds have the strong electrostatic force of attractions between the cation or atoms and the delocalized electrons in the geometrical arrangement of the two metals. ... Metallic bonds are malleable and ductile, while covalent bonds and ionic bonds non-malleable and non-ductile.
Answer:The conclusion is less accurate.
Explanation:
Feb 17, 2021 — He completes more than one trial. Why is it important for Daniel to do this?