Infrared radiation
Explanation:
The type of electromagnetic waves Jeff uses to make his goggles work are the infrared radiations.
Jeff is certainly using a night vision goggle to see in the dark . It senses infrared radiations
- Infrared radiations are part of the electromagnetic spectrum.
- Every hot objects gives off infrared radiations.
- These googles have thermal imaging sensors that detects these radiations.
- Naked eyes cannot see the radiations.
- The heat emitted is a form of radiation called the infrared radiation.
learn more:
Electromagetic radiation brainly.com/question/6818046
#learnwithBrainly
C + H2O -> H2 + CO
n(C) = 15.9/12 = 1.325 (mol)
=> n(H2) = 1.325 mol
We have:
PV = nRT
=> V = (nRT)/P
(R = 22.4/273 = 0.082)
V = (1.325 x 0.082 x 360)/1 = 39.114 (L)
Answer:
The answer is quartet 2.40 ppm.
Note: Kindly find an attached image below for the part of the solution to this question
Sources: The image was researched from Course hero platform
Explanation:
Solution
Multiplicity or (n+1) rule:
It helps in determination of multiplicity of an individual proton or individual types of proton which are available in the molecule.
Multiplicity =(n+1)
Thus
The non equivalent protons which are attached from adjacent atom is denoted by n.
Now because there are three non-equivalent protons are present at adjacent carbon of methylene group, hence the multiplicity of methylene hydrogen is given as follows:
The multiplicity will be the same for the two hydrogen's. thus we compute multiplicity only for one hydrogen atom stated below:
Non- equivalent = 3
Multiplicity = (3 +1)
= 4
= Quartet for 2H
A quartet for 2H indicates that the hydrogen atoms attached from the carbon, which is attached one side from a methyl group and the other side form an atom that have no any hydrogens.
Now due +I effect of carbonyl group, chemical shift value is high for these two hydrogens which is exactly at 2.40 ppm or 2.40 Quartet.
Answer:
a) Schmidt number
Explanation:
Prandtl number in heat transfer is analogues to Schmidt number in mass transfer.
Prandtl number in heat transfer is the ration of momentum diffusivity to the heat diffusivity.

Whereas, Schmidt number in mass transfer is the ratio of momentum diffusivity to the mass diffusivity.

Arkeisha is correct because the fluid in an alkaline battery has a ph between 7.1 and 14.0