Answer:
Explanation:
Apply the law of conservation of energy

![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
from the law of conservation of the linear momentum

Therefore,
![Gm_1m_2[\frac{1}{r_f} -\frac{1}{r_1} ]=\frac{1}{2} (m_1v_1^2+m_2v_2^2)](https://tex.z-dn.net/?f=Gm_1m_2%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D%3D%5Cfrac%7B1%7D%7B2%7D%20%28m_1v_1%5E2%2Bm_2v_2%5E2%29)
![=\frac{1}{2} [m_1v_1^2+m_2[\frac{m_1v_1}{m_2} ]^2]\\\\=\frac{1}{2} [m_1v_1^2+\frac{m_1^2v_1^2}{m_2} ]\\\\=\frac{m_1v_1^2}{2} [\frac{m_1+m_2}{m_2} ]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2Bm_2%5B%5Cfrac%7Bm_1v_1%7D%7Bm_2%7D%20%5D%5E2%5D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bm_1v_1%5E2%2B%5Cfrac%7Bm_1%5E2v_1%5E2%7D%7Bm_2%7D%20%5D%5C%5C%5C%5C%3D%5Cfrac%7Bm_1v_1%5E2%7D%7B2%7D%20%5B%5Cfrac%7Bm_1%2Bm_2%7D%7Bm_2%7D%20%5D)
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
Substitute the values in the above result
![v_1^2=[\frac{2Gm_2^2}{m_1+m_2} ][\frac{1}{r_f} -\frac{1}{r_1} ]](https://tex.z-dn.net/?f=v_1%5E2%3D%5B%5Cfrac%7B2Gm_2%5E2%7D%7Bm_1%2Bm_2%7D%20%5D%5B%5Cfrac%7B1%7D%7Br_f%7D%20-%5Cfrac%7B1%7D%7Br_1%7D%20%5D)
![=[\frac{2(6.67\times 10^-^1^1)(107)^2}{27+107} ][\frac{1}{26} -\frac{1}{41}] \\\\=1.6038\times 10^-^1^0\\\\v_1=\sqrt{1.6038\times 106-^1^0} \\\\=1.2664 \times 10^-^5m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B2%286.67%5Ctimes%2010%5E-%5E1%5E1%29%28107%29%5E2%7D%7B27%2B107%7D%20%5D%5B%5Cfrac%7B1%7D%7B26%7D%20-%5Cfrac%7B1%7D%7B41%7D%5D%20%5C%5C%5C%5C%3D1.6038%5Ctimes%2010%5E-%5E1%5E0%5C%5C%5C%5Cv_1%3D%5Csqrt%7B1.6038%5Ctimes%20106-%5E1%5E0%7D%20%5C%5C%5C%5C%3D1.2664%20%5Ctimes%2010%5E-%5E5m%2Fs)
B) the speed of the sphere with mass 107.0 kg is

\\\\=3.195\times 10^-^6m/s](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27%7D%7B107%7D%20%5D%281.2664%20%5Ctimes%2010%5E-%5E5%29%5C%5C%5C%5C%3D3.195%5Ctimes%2010%5E-%5E6m%2Fs)
C) the magnitude of the relative velocity with which one sphere is

D) the distance of the centre is proportional to the acceleration

Thus,

and

When the sphere make contact with eachother
Therefore,

And

The point of contact of the sphere is

Answer:
"Scientists used them to create new theories"
Explanation:
The Scientific Revolution was a sequence of actions that manifest the development of contemporary science through the early contemporary period, when advances in mathematics, physics, astronomy, biology and chemistry altered the opinions of civilization around nature. The scientific revolution denotes to the quick developments in European scientific, mathematical, and political assumed, grounded on a new philosophy of experimentation and a belief in growth that defined Europe in the 16th and 17th centuries.
Answer:
The value of each charge is 4.22 x 10⁻⁵ C
Explanation:
Given;
distance between the two identical charges, d = 2 m
the force of repulsion between these two charges, F = 4N
Apply Coulomb's law;

Therefore, the value of each charge is 4.22 x 10⁻⁵ C
The disadvantages of shared decision making are:
Adopting a wrong advice from a member can lead to a big risk to the company and the business.
Further, increased number of advice also confuses the person, about which to follow and which to ignore.
There is also diffusion of responsibility and lowered efficiency.