1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
borishaifa [10]
3 years ago
11

A wedge with an inclination of angle θ rests next to a wall. A block of mass m is sliding down the plane. There is no friction b

etween the wedge and the block or between the wedge and the horizontal surface.
Find the magnitude, Fnet, of the sum of all forces acting on the block.
Express Fnet in terms of θ and m, along with any necessary constants.
Find the magnitude, Fww, of the force that the wall exerts on the wedge.
Express Fww in terms of θ and m, along with any necessary constants.
Physics
1 answer:
Softa [21]3 years ago
6 0

Answer:

  The net force on the block  F(net)  = mgsinθ).

   Fw =mg(cosθ)(sinθ)

Explanation:

(a)

Here, m is the mass of the block, n is the normal force, \thetaθ is the wedge angle, and Fw  is the force exerted by the wall on the wedge.

Since the block sliding down, the net force on the block is along the plane of the wedge that is equal to horizontal component of weight of the block.

                    F(net)  = mgsinθ

The net force on the block  F(net)  = mgsinθ).

The direction of motion of the block is along the direction of net force acting on the block. Since there is no frictional force between the wedge and block, the only force acting on the block along the direction of motion is mgsinθ.

(b)

From the free body diagram, the normal force n is equal to mgcosθ .

                           n=mgcosθ

The horizontal component of normal force on the block is equal to force

                           Fw=n*sin(θ) that exerted by the wall on the wedge.

Substitute mgcosθ for n in the above equation;

                           Fw =mg(cosθ)(sinθ)

Since, there is no friction between the wedge and the wall, there is component force acting on the wall to restrict the motion of the wedge on the surface and that force is arises from the horizontal component for normal force on the block.

You might be interested in
Final velocity will be greater than initial velocity of an object is
Natali [406]

Answer:

accelerating

Explanation:

If we consider(v > u) Acceleration:

final velocity(v)= 14m/s

initial velocity(u)=10m/s

time taken(t)= 2 seconds

a= \frac{(v-u)}{t} =\frac{(14-10)}{2}=2m/s²

If we consider (v<u) Deceleration:

final velocity(v)= 3m/s

initial velocity(u)=9m/s

time taken(t)=2 seconds

a= \frac{(v-u)}{t}=\frac{(3-9)}{2}= -3m/s²

4 0
2 years ago
When the distance between two interacting objects doubles, the gravitational force is
Umnica [9.8K]

The gravitational force will be one quarter.

The gravitational force between two objects is given by the formula

F=GMm/r^2

here, r is the distance between the objects.

Thus the gravitational force is inversely proportional to the square of the distance between the objects, Therefore if the distance between two objects is doubled the force will be one quarter.

5 0
3 years ago
8. A meter reader determines that a business has used 5000 kW.h of energy in 4 months. If
ladessa [460]

Answer:

ENERGY AND COST. One kllowatt hour is 1,000 watts of power for one hour of time. ... Determine power: P = V XI ... Calculate the total kilowatt hours used. ... If the electric costs are 150 per kWh, how much does it cost to run the refrigerator in ... 8. A room was lighted with three 100-watt bulbs for 5 hours per day. If the cost of.

Explanation:

7 0
2 years ago
Which isotope is use to date ancient artifacts such as fossils?
meriva

the isotope they use is carbon-14


5 0
3 years ago
Check all that apply. The magnetic force on the current-carrying wire is strongest when the current is parallel to the magnetic
dedylja [7]

Answer:

The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.

The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.

The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.

Explanation:

The magnitude of the magnetic force exerted on a current-carrying wire due to a magnetic field is given by

F=ILB sin \theta (1)

where I is the current, L the length of the wire, B the strength of the magnetic field, \theta the angle between the direction of the field and the direction of the current.

Also, B, I and F in the formula are all perpendicular to each other. (2)

According to eq.(1), we see that the statement:

<em>"The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.</em>"

is correct, because when the current is perpendicular to the magnetic field, \theta=90^{\circ}, sin \theta = 1 and the force is maximum.

Moreover, according to (2), we also see that the statements

<em>"The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field. "</em>

<em>"The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current. "</em>

because F (the force) is perpendicular to both the magnetic field and the current.

5 0
3 years ago
Other questions:
  • A merry-go-round starts from rest and reaches the angular speed of 4 rpm in the first two minutes. what would be the angular acc
    8·1 answer
  • A tennis ball of mass 57 g travels with velocity &lt; 70, 0, 0 &gt; m/s toward a wall. After bouncing off the wall, the tennis b
    15·1 answer
  • Suppose a ray of light traveling in a material with an index of refraction n a reaches an interface with a material having an in
    12·1 answer
  • The speed of light is about 3.00 × 105 km/s. It takes approximately 1.28 seconds for light reflected from the
    14·1 answer
  • The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
    11·1 answer
  • Which of the following statements describes the movement of air?
    13·1 answer
  • The boom of a fire truck raises a fireman (and his equipment – total weight 280 lbf) 60 ft into the air to fight a building fire
    10·1 answer
  • Describe different types of force in nature at least five​
    15·2 answers
  • A 75kg hockey player is skating across the ice at a speed of 6.0m/s. What is the magnitude of the average force required to stop
    9·1 answer
  • A sound travels down a hallway that is 115 m long. Then it echoes and
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!