It can be transmit in hydraulic machine, exerting a small cross-sectional area can lead to pressure being transmitted
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.
Answer:
time taken by the wave to reach the person is 0.2 s
Explanation:
As we know that the speed of the wave is given as

here we know that the wavelength of the wave is


now speed of the wave is given as


Now time taken by the wave to reach 5 m distance is



Answer:
0 J
Explanation:
given,
mass of the ball = 5 kg
radius of the horizontal circle = 0.5 m
tension in the string = 10 N
Work done = ?
Work done by the tension in the circular path will be equal to zero.
This is because body moves in circular path, the centripetal force act along the radius of the circle and motion is right angle to the tension on the string.
so, work done = F s cos θ
θ = 90°,
work done = F s cos 90° ∵ cos 90° = 0
Work done = 0 J