Answer:

Explanation:
the relation between current, voltage and resistance in an electrical circuit is given by Ohm's law:

where V is the voltage, I is the current and R is the resistance. In this problem, the current is I=2 A, the voltage is V=120 V, therefore we can arrange the previous equation and find the resistance:

Answer:
0.782 s
Explanation:
The water flows horizontally from the hose, so its initial vertical velocity is 0.
Given:
y₀ = 3 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 m = 3 m + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 0.782 s
Round as needed.
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.
Answer:
acceleration of the rocket is given as

Explanation:
As we know that rocket starts from rest and then reach to final speed of 447 m/s after t = 1 min
so we have



so we have


