Answer:
As collision is elastic,thus we can use conservation of momentum equation
mA=0.2 kg
(vB)1=0 m/s.......................as it is on rest before collision
(vA)1=4 m/s
(vA)2=-1 m/s
(vB)2=2 m/s
using equation
(mA*vA+mB*vB)1= (mA*vA+mB*vB)2
Where 1 and 2 represents before and after collision
(0.2*4)+(mB*0)=(0.2*-1)+(mB*2)
0.8=-0.2+(2mB)
mass of object B=mB=0.3 Kg
Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms
Inertia I think because I've heard it around school and in science
Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s