Answer:
Mass of the sled in the snow 83.33 kg.
<u>Explanation</u>:
Given that,
Force applied to move the sled in the snow (F) = 75N

We know that
Newton's second law of motion is

F = ma (Or "force" is equal to "mass" times "acceleration".)
So if we move this around we can isolate mass and get mass


M = 83.33 kg
Mass of the sled in the snow <u>83.33 kg.</u>
Answer:
The answer to your question is a = 0.25 m/s²
Explanation:
Data
mass = m = 400 kg
Force = F = 100 N
acceleration = a = ? m/s²
Process
To solve this problem use Newton's second law that states that the force applied to an object is directly proportional to the mass of the body times its acceleration.
Formula
F = ma
solve for a
a = 
Substitution

Simplification and result
a = 0.25 m/s²
Answer:
that's nice very nice super duper nicer
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :

R is the Rydberg's constant
For Balmer series, n₁ = 2. So,


or

So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.
Answer:
600 and 1500 [ohm
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is the product of the current by the resistance, so we have:
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
<u>Therefore:</u>
R = V/I
R1 = 60/(40*10^-3) = 1500 [ohm]
R2 = 60/(100*10^-3) = 600 [ohm]
So the resistance should be among 600 and 1500 [ohm]