Answer:
The magnitude of the average angular acceleration of the disk is
.
Explanation:
Given that,
Angular velocity, 
The disk comes to rest, 
Time, t = 0.234 s
We need to find the magnitude of the average angular acceleration of the disk. It is given by change in angular velocity per unit time. So,

So, the magnitude of the average angular acceleration of the disk is
.
Answer:
Terminal speed, v = 6901.07 m/s
Explanation:
It is given that,
Mass of the horizontal bar, m = 30 g = 0.03 kg
Length of the bar, l = 13 cm = 0.13 m
Magnetic field, 
Resistance, R = 1.2 ohms
We need to find the terminal speed oat which the bar falls. When terminal speed is reached,
Force of gravity = magnetic force
..................(1)
i is the current flowing
l is the length of the rod
Due to the motion in rods, an emf is induced in the coil which is given by :
, v is the speed of the bar


Equation (1) becomes,



v = 6901.07 m/s
So, the terminal speed at which the bar falls is 6901.07 m/s. Hence, this is the required solution.
Mass m = 68 kg
center of gravity from his palms x = 0.7 m
center of gravity from his feet x ' = 1 m
forces exerted by the floor on his palms and feet are F and F ' respectively.
with respect to palms :---------------------
( F*0 ) - (W * x ) + [ F ' * (x+x') ] = 0
-mg*0.7 + F ' * 1.7 = 0 where W = weight = mg
F ' * 1.7 = mg * 0.7
F ' = mg * 0.7 / 1.7
= 68 *9.8 * ( 0.7 / 1.7 )
= 274.4 N
with respect to feet :--------------------
( F ' * 0 ) -( W* x ' ) + [F * ( x + x') ] = 0
-mg*1 + [ F * 1.7 ]= 0
F = mg / 1.7
= 392 N
In this problem, we are asked to prove that OCl2 is polar. The VSEPR model of OCl2 is bent. Cl has an electornegativity of 3.16 while O has an electronegativity of 3.44. In this case, we add the two individual dipole moments because they are vectors. Since the sum is equal to greater than 0.5, the molecule should have to be polar.