Answer:
F. 25.82 s
Explanation:
Given:
Δy = 90 m
v₀ = 0 m/s
a = 0.27 m/s²
Find: t
Δy = v₀ t + ½ at²
90 m = (0 m/s) t + ½ (0.27 m/s²) t²
t = 25.82 s
Answer:
Claim: The heart pumps more blood throughout the body when one exercises because exercise takes a lot of energy from the body.
Evidence: Heart rate went from 80 bpm to 120 bpm
Reasoning: Doing exercise takes a lot of energy to do, causing the circulatory system to have to work harder and pump more blood throughout the body in order to allow someone to be able to do a task that involves so much movement and energy.
Explanation:
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)


Answer:
-387883.3 m/s²
0.000286168546055 seconds
Explanation:
t = Time taken
u = Initial velocity = 370 m/s
v = Final velocity = 259 m/s
s = Displacement = 9 cm
a = Acceleration

The acceleration of the bullet is -387883.3 m/s²

The time taken is 0.000286168546055 seconds
Answer:
The correct answer to the question is
Both A and B are true
Explanation:
The particles of a gas are free to move to occupy the entire volume in which they are placed due to the smallerinter molecular forces holding them together hence due to the face that pressure is a measure of the Force per unit area that is Pressure P = ( Force F)/ (Area A) then the force per unit area, exerted on the all of the container by the gaseous particles which are colliding with each other and with the walss of the container is fairly constant through out the surface oof the container
In the case of the liquid which are held on together by more stronger forces, the force per nit area exerted by the liquid particle is transmitted from one particle to the next until it reaches the container's surface. Then remembering that the force of gravity on the liquid is acting in one direction (that is downwards) the sum of the fprce due to the weight incrreases as we progress deaper into the liquid hence the pressure increases per unit depth