Answer:
Front weels
Explanation:
Because they are the one which select the direction of the car.
Answer:
665 ft
Explanation:
Let d be the distance from the person to the monument. Note that d is perpendicular to the monument and would make 2 triangles with the monuments, 1 up and 1 down.
The side length of the up right-triangle knowing the other side is d and the angle of elevation is 13 degrees is

Similarly, the side length of the down right-triangle knowing the other side is d and the angle of depression is 4 degrees

Since the 2 sides length above make up the 200 foot monument, their total length is
0.231d + 0.07d = 200
0.301 d = 200
d = 200 / 0.301 = 665 ft
B. Sound, because everything else sits still and sound waves move
Given:
(Initial velocity)u=20 m/s
At the maximum height the final velocity of the ball is 0.
Also since it is a free falling object the acceleration acting on the ball is due to gravity g.
Thus a=- 9.8 m/s^2
Now consider the equation
v^2-u^2= 2as
Where v is the final velocity which is measured in m/s
Where u is the initial velocity which is measured in m/s
a is the acceleration due to gravity measured in m/s^2
s is the displacement of the ball in this case it is the maximum height attained by the ball which is measured in m.
Substituting the given values in the above formula we get
0-(20x20)= 2 x- 9.8 x s
s= 400/19.6= 20.41m
Thus the maximum height attained is 20.41 m by the ball
Answer:
Density of 127 I = 
Also, 
Explanation:
Given, the radius of a nucleus is given as
.
where,
- A is the mass number of the nucleus.
The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

For the nucleus 127 I,
Mass, M = 
Mass number, A = 127.
Therefore, the density of the 127 I nucleus is given by

On comparing with the density of the solid iodine,
