In position time graphs, otherwise known as distance time graphs, acceleration/decceleration occurs when the line curves, which looks like the picture I've included.
In hours 2 to 3, the object does not accelerate, but instead stays at a constant speed of 20m per hour.
Answer:
12.5 m.
Explanation:
Speed: This can be defined as the rate of change of distance. The S.I unit of speed is m/s. Mathematically it can be expressed as,
Speed = distance/time
S = d/t......................... Equation 1
d = S×t ...................... Equation 2.
Where S = speed of the car, d = distance, t = time taken to shut the eye during sneezing
Given: S = 90 km/h, t = 0.50 s.
Conversion: 90 km/h ⇒ m/s = 90(1000/3600) = 25 m/s.
S = 25 m/s.
Substitute into equation 2.
d = 25×0.50
d = 12.5 m.
Hence the car will move 12.5 m during that time
Kinetic energy is energy of motion while temperature is a measure of that energy in substances.
This causes reverse faults<span>, which are the reverse of </span>normal faults<span>, because in this case, the hanging wall slides upward relative to the footwall. Shear </span>stress<span> is when rock slabs slide past each other horizontally. There is no vertical movement of either the hanging wall or footwall, and we get a strike-slip </span>fault<span>.</span>
Answer:
<h2>0.67 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you