The relative molecular mass of the gas : 64 g/mol
<h3>Further explanation</h3>
Given
Helium rate = 4x an unknown gas
Required
The relative molecular mass of the gas
Solution
Graham's Law

r₁=4 x r₂
r₁ = Helium rate
r₂ = unknown gas rate
M₁= relative molecular mass of Helium = 4 g/mol
M₂ = relative molecular mass of the gas
Input the value :

ur mom ur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur momur mom
Answer: 2.19x10^25 atoms
Explanation:
Molar Mass of Neon = 20g/mol
1mole(20g) of Neon contains 6.02x10^23 atoms.
Therefore, 7.27x10^2g of Neon will contain x atoms i.e
X atoms = (7.27x10^2x6.02x10^23)/20 = 2.19x10^25 atoms
Answer:
The equilibrium expression is:
CoC2O4(s)⇌Co2+(aq)+C2O2−4(aq)
For this reaction:
Ksp = [Co2+][C2O2−4]=1.96×10−8
Explanation:
Batteries will not clot if cobalt ions are removed from its cells. Some blood collection tubes contain salts of the oxalate ion,
C2O2−4
, for this purpose. At sufficiently high concentrations, the calcium
and oxalate ions form solid, CoC2O4·H2O (which also contains water bound in the solid). The concentration of Co2+ in a sample of blood serum is 2.2 × 10–3M. What concentration of
C2O2−4
ion must be established before CoC2O4·H2O begins to precipitate.
CoC2O4 does not appear in this expression because it is a solid. Water does not appear because it is the solvent.
Solid CoC2O4 does not begin to form until Q equals Ksp. Because we know Ksp and [Co2+], we can solve for the concentration of
C2O2−4
that is necessary to produce the first trace of solid: