Answer:
strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other.
Explanation:
In liquids, the attractive intermolecular forces are <u>strong enough to hold molecules relatively close together but not strong enough to keep molecules from moving past each other</u>.
Intermolecular forces are the forces of repulsion or attraction.
Intermolecular forces lie between atoms, molecules, or ions. Intramolecular forces are strong in comparison to these forces.
<u />
respiratory and lymphatic
Both of them have high electronegativity. Hence they both tend to gain electrons to gain stability.
Answer:PLEASE MARK BRAINIEST
The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. Today, this process uses instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element — and combination of elements — has a unique fingerprint that astronomers can look for in the spectrum of a given object. Identifying those fingerprints allows researchers to determine what it is made of.
That fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy configuration. But when photons carrying energy hit an electron, they can boost it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths (i.e., energies) related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Explanation:
Answer:
This part require data such as Avogadro's number and the molar mass of water. But first, let's find the mass of water in the specified volume by making use of the density formula:
Density = mass/volume
1 g/mL = Mass/70 mL
Mass = 70 g
Each water contains 18 grams per mole, and each mole contains 6.022×10²³ molecules of water. Thus,
70 g * 1mole/18 g * 6.022×10²³ molecules/mole = 2.342×10²⁴ molecules of water
Explanation: