Answer:
it would take longer to boil on top of a mountain because the water is not as hat
Answer: a. 0.75m (NH4)3PO4 will have the lowest freezing point .
Explanation: Freezing point decreases as the concentration of the solute substance increases. Assuming the same solvent for all of them, for instance water.
∆T= i.Kf.b
∆T= freezing point depression
i= vant Hoff factor
Kf= molality
Assuming water to be the solvent for all Kf=1.86°C/M
VANT HOFF FACTORS :
For (NH4)3PO4
This has 3 ionic bonding and 1 covalent bonding making it 4 bond
Therefore i=4
For CaSO4
This has 1 metallic bond and 1 covalent bond making it 2 bond.
Therefore i=2
For LiCl
This has 1 metallic bond and 1 non metallic bond making it 2 bond.
Therefore i=2
For CH3OH
This has only 1 covalent bond.
Therefore i=1
MOLALITY:
(NH4)3PO4 = 0.75M
CaSO4= 1.0M
LiCl= 1.0M
CH3OH= 1.5M
FREEZING POINT DEPRESSION:
For (NH4)3PO4
∆T= 4×0.75×1.86=5.58°C
For CaSO4
∆T= 2×1.0×1.86=3.72°C
For LiCl
∆T = 2×1.0×1.86= 3.72°C
For CH3OH
∆T= 1×1.5×1.86=2.79°C
REMEMBER THE HIGHER THE FREEZING POINT DEPRESSION THE LOWER THE FREEZING POINT.
FREEZING POINT DEPRESSION IS THE CHANGE IN THE FREEZING POINT PROPORTIONAL TO THE AMOUNT OF SOLUTE ADDED THE THE SOLUTION.
THEREFORE THE ONE WITH THE LOWEST FREEZING POINT IS (NH4)3PO4
Balanced chemical reaction: 2K(s) + 2H₂O(l) → 2KOH(aq) + H₂(g).
KOH is inorganic compound p<span>otassium hydroxide, a strong base.
H</span>₂ is hydrogen gas.
In balanced chemical reaction number of atoms on both side of chemical reaction must be same. There are two potassium atoms, four hydrogen atoms and two oxygen atoms on both side of reaction.
The balanced chemical equation for the <span>combustion of ethane is
2C</span>₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l)
The stoichiometric ratio between C₂H₆(g) and CO₂(g) is 1 : 2
Hence,
moles of CO₂(g) produced = moles of reacted C₂H₆(g) x 2
= 1.00 mol x 2
= 2.00 mol
Hence, the correct answer is "C".
No, the density of an object does not depend on its size.
A piece of glass with a volume of 10 cm³ may have a mass of 27 g. Its density is
<em>D</em> = <em>m</em>/<em>V</em> = 27 g/10 cm³ = 2.7 g/cm³
A piece of the same type of glass with a volume of 20 cm³ will have a mass
of 54 g. Its density is
<em>D</em> = <em>m</em>/<em>V</em> = 54 g/20 cm³ = 2.7 g/cm³
Thus, density does not change with the size of an object. Density is an <em>intensive property</em>.