I'm sure that to calculate the freezing point depression <span>subtract</span> solution's freezing point and the freezing point of it's pure solvent. According to the formula.
Answer:
Mg(NO4)2 is 180.3 g/mol
Explanation:
First find the substance formula.
Magnesium Nitrate.
Magnesium is a +2 charge.
Nitrate is a -1 charge.
So to balance the chemical formula,
We need 1 magnesium atom for every nitrate atom.
2(1) + 1(-2) = 0
So the substance formula is Mg(NO4)2.
Now find the molar mass of Mg(NO4)2.
Mg = 24.3 amu
N = 14.0 amu
O = 16.0 amu
They are three nitrogen and twelve oxygen atoms.
So you do this: 24.3 + 14.0(2) + 16.0(8) = 180.3 g/mol
So the molar is mass is 180.3 g/mol.
The final answer is Mg(NO4)2 is 180.3 g/mol
Hope it helped!
Toulene = 35.6 g
Benzene = 125 g = 0.125 kg
Molecular weight of Toluene C6H5CH3 = 92.1g/mol
Moles of toulene = 35.6 g / 92.1 g/mol = 0.3865 mol
Now the molarity of the toulene in the given solution = 0.3865 / 0.125 = 3.092 m
Molarity of C6H5CH3 = 3.092 m
Answer:
In compound 1 the Tert butyl group occupies the equatorial position and the Bromine occupies the axial position and in compound 2 the Tert butyl occupies the axial and the bromine occupies equatorial positions. Compound 1 reacts faster than compound 2.
Explanation:
In cyclic organic compounds, substituents may occupy the axial or equatorial positions. The axial positions are aligned parallel to the symmetry axis of the ring while the equatorial positions are around the plane of the ring.
Bulky substituents have more room in the equatorial than in the axial position. This means that compound 1 is more stable than compound 2.
This is clear on the basis of stability of the molecules because compound 1 will react faster than compound 2 since the bulky tertiary butyl group in compound 1 occupy equatorial and not axial positions.
Answer:
P = 0.6815 atm
Explanation:
Pressure = 754 torr
The conversion of P(torr) to P(atm) is shown below:
So,
Pressure = 754 / 760 atm = 0.9921 atm
Temperature = 294 K
Volume = 3.1 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9921 atm × 3.1 L = n × 0.0821 L.atm/K.mol × 294 K
⇒n of helium gas= 0.1274 moles
Surface are = 1257 cm²
For a sphere, Surface area = 4 × π × r² = 1257 cm²
r² = 1257 / 4 × π ≅ 100 cm²
r = 10 cm
The volume of the sphere is :
Where, V is the volume
r is the radius
V = 4190.4762 cm³
1 cm³ = 0.001 L
So, V (max) = 4.19 L
T = 273 K
n = 0.1274 moles
Using ideal gas equation as:
PV=nRT
Applying the equation as:
P × 4.19 L = 0.1274 × 0.0821 L.atm/K.mol × 273 K
<u>P = 0.6815 atm</u>
<u></u>