Still go straight but would obviously go up in speed!!
Hope this helps plz mark as brainlist and 5 star
The correct answer is that they would all hit the ground at the same time. If no air resistance is present, the rate of descent depends only on how far the object has fallen, no matter how heavy the object is. This means that two objects will reach the ground at the same time if they are dropped simultaneously from the same height. This statement follows from the law of conservation of energy and has been demonstrated experimentally by dropping a feather and a lead ball in an airless tube.
<span>We use m/s for the velocity, and m2/(V·s) for the </span><span>mobility.</span>
Kinetic energy = (1/2) (mass) (speed)²
Before slowing down, the car's speed is 25 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (25 m/s)²
= (1/2) (1,500 kg) (625 m²/s²)
= 468,750 joules .
After slowing down, the car's speed is 15 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (15 m/s)²
= (1/2) (1,500 kg) (225 m²/s²)
= 168,750 joules.
The car lost (468,750 - 168,750) = 300,000 joules of K.E.
The law of Conservation of Energy says:
That 300,000 joules had to go somewhere.
If it's a standard, gas-powered car, then the kinetic energy got
put into the brakes. The energy turned into heat, and the heat
was carried off in the air.
If it's a more modern electric or hybrid car, then the kinetic energy
spun the wheel motors, turning them temporarily into electrical
generators. The generators converted the kinetic energy into
electrical energy, which got put back into the car's batteries, and
could be used again. That's why electric cars use less gas.
The boat's initial velocity is:

While the boat's acceleration is

with a negative sign, since the boat is slowing down, so it is a deceleration. The distance traveled by the boat until it comes to a stop can be found by using the following equation:

where vf=0 is the final velocity of the boat and S is the distance covered. Re-arranging the formula, we can find S:
