Omitting the 1 will not change the value of the number, but will change the units at the end of the problem
The child on a swing can be modeled as a simple pendulum. The period of a simple pendulum is given by
Answer:
260 km
65 km/hr
Explanation:
The displacement of an object is the distance moved by that object in a particular direction.
velocity = displacement / time, therefore,
Displacement = velocity * time.
Total displacement for the 4 HR trip = displacement for 2.5 hr + displacement for 1.5 hr
total displacement = (80 * 2.5) + (40 * 1.5)
Total displacement = 200 + 60
Total displacement = 260 Km
average velocity for the total trip = total displacement / total time taken
average velocity = 260 km/ 4 hr
average velocity = 65 km/hr
Frequency and Wavelength
<u>Explanation:</u>
The speed of a wave changes based on frequency and wavelength. Wavelength is the distance between two corresponding points on adjacent waves. Wave frequency is the number of waves that pass a fixed point in a given amount of time. The wave speed depends upon the medium through which the wave is moving. Only an alteration in the properties of the medium will cause a change in the speed.
Speed, frequency and wavelength is related as:
speed = frequency X wavelength
Increasing the wavelength of a wave doesn’t change its speed. That’s because when wavelength increases, wave frequency decreases. As a result, the product of wavelength and wave frequency is still the same speed.
Answer:
The final velocity of the race car is 27.14 m/s
Explanation:
Given;
initial velocity of the race car, u = 18.5 m/s
acceleration of the race car, a = 2.47 m/s²
distance covered by the race car, s = 79.78 m
Apply the following kinematic equation to determine the final velocity of the race car.
v² = u² + 2as
v² = (18.5)² + 2(2.47)(79.78)
v² = 736.363
v = √736.363
v = 27.14 m/s
Therefore, the final velocity of the racecar is 27.14 m/s