Answer:
total number of modes is 8
Explanation:
attached here is the calculations
Answer:Sound travel faster in warm room.
Explanation:The speed of sound depends on the temperature of the medium. Mathematically, the relation between the speed of the sound and the temperature is give by:v=
is the ratio of the specific heats
R is the gas constant
T is the temperature of the medium
We know that the temperature of the warm room is more as compared to the cold room.
So, it is clear that the sound travel faster in a warm room. The particles move faster when the temperature is high.
Answer:
c. V = k Q1 * Q2 / R1 potential energy of Q1 and Q2 separated by R
V2 / V1 = (R1 / R2) = 1/4
V2 = V1 / 4
That's 105 km that he flew, or 65.2 miles ! I'm absolutely positive
that the crow must have landed and gotten some rest when you
weren't looking. But that had no effect on his displacement when
he got where he was going, so we can continue to solve the problem:
The displacement is the distance and direction from the place
where the crow took off to the place where he landed.
-- It's distance is the hypotenuse of the right triangle whose legs
are 60 km and 45 km.
D² = (60 km)² + (45 km)²
= 3,600 km² + 2,025 km² = 5,625 km²
D = √(5625 km²) = 75 km .
-- It's direction is the angle whose tangent is (45 S / 60 W).
tan⁻¹ (45/60) = tan⁻¹ (0.75) = 36.9° south of west
= 53.1° west of south.
= not exactly southwest but close.
The answer is B, because it will lose potential energy.