1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kitty [74]
3 years ago
6

What happens to a low-mass star after helium flash?

Physics
1 answer:
ZanzabumX [31]3 years ago
4 0

The Luminosity Decreases.

You might be interested in
Wavelength of blue photons 495 nm, what is the frequency? and what is the energy?
inessss [21]

Answer:

1.F: About 6*10^14 Hz

2.E: About 4*10^ -19 J

Explanation:

Frequency: We knew that the speed of a wave is its wavelength(λ)* frequency(f, in Hz).  By the wave-particle duality we know we can calculate the frequency of light in the same way. So, c=495nm *f, f=c/495nm=> (299,792,458 m/s) / (4.95*10^-7 m)

=6.05*10^14 /s

Energy: The energy photon contains can be calculate by this formula-- E=hf

f is the frequency and h is Planck's constant which is about 6.62 ×10^-34 *m^2*kg/s (after dimensional analysis ) =6.62*10^ -34 J*s.

So, the energy of a blue photon is (6.05*10^14)*(6.62*10^-34)=40.051*10^-20=  4.051*10^-19 J

3 0
3 years ago
A motorcyclist heading east through a small town accelerate at constant 4.0meter per seconds square after he leaves the limits.
SVETLANKA909090 [29]

A) The position at t = 2.0 sec is 43.0 m east

B) The position is 55 m east

Explanation:

A)

In order to solve the problem, we take the east direction as positive direction.

We know that:

- at t = 0, the motorcyclist is at a position of x_0 = 5.0 m

- at t = 0, the initial velocity of the motorcyclist is v_0 = 15.0 m east

- The acceleration of the motorcyclist is constant and it is a=4.0 m/s^2

Since the motion is a uniformly accelerated motion, the position of the motorcylist is given by the expression

x(t)=x_0 + v_0t + \frac{1}{2}at^2

where t is the time.

Substituting t = 2.0 s, we find the position:

x(2.0)=(5.0)+(15)(2.0)+\frac{1}{2}(4.0)(2.0)^2=43 m

B)

The velocity of the motoryclist can be found by calculating the derivative of the position. Therefore, it is:

v(t)=x'(t)=v_0 + at

where:

v_0=15.0 m/s is the initial velocity

a=4.0 m/s^2 is the acceleration

We want to find the time t at which the velocity is

v = 25 m/s

Solving the equation for t,

t=\frac{v-v_0}{a}=\frac{25-15}{4}=2.5 s

And therefore, the position at t = 2.5 s is:

x(2.5s)=5.0+(15.0)(2.5)+\frac{1}{2}(4)(2.5)^2=55 m

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

3 0
3 years ago
Help for brainliest!
madam [21]

A “real” image occurs when light rays actually intersect at the image, and become inverted, or turned upside down. ... In flat, or plane mirrors, the image is a virtual image, and is the same distance behind the mirror as the object is in front of the mirror. The image is also the same size as the object.

3 0
2 years ago
An aircraft with a mass of 10,000 kg starts from rest at sea level and takes off, then flies to a cruising speed of 620 km/h and
Natasha_Volkova [10]

Answer:

The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.

Explanation:

Given that,

Mass of aircraft = 10000 kg

Speed = 620 km/h = 172.22 m/s

Altitude = 10 km = 1000 m

We calculate the change in potential energy

\Delta P.E=mg(h_{2}-h_{1})

\Delta P.E=10000\times9.8\times(10000-0)

\Delta P.E=10000\times9.8\times10000

\Delta P.E=980000000\ J

\Delta P.E=980\ MJ

For g = 10 m/s²,

The change in potential energy will be 1000 MJ.

We calculate the change in kinetic energy

\Delta K.E=\dfrac{1}{2}m(v_{2}^2-v_{1}^2)

\Delta K.E=\dfrac{1}{2}\times10000\times(172.22^2-0^2)

\Delta K.E=\dfrac{1}{2}\times10000\times(172.22^2)

\Delta K.E=148298642\ J

\Delta K.E=148.3\ MJ

For g = 10 m/s²,

The change in kinetic energy will be 150 MJ.

Hence, The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.

7 0
3 years ago
a bicycle uniformly from rest at time t the velocity of the bicycle is v at what time will the bicycle have a velocity of 4v​
sesenic [268]

Here

  • Acceleration and initial velocities are constant.

According to first equation of kinematics.

\\ \sf\longmapsto v=u+at

\\ \sf\longmapsto v=0+at

\\ \sf\longmapsto v=at

\\ \sf\longmapsto v\propto t

  • Time was t at velocity v
  • Time will be 4t at velocity 4v
7 0
2 years ago
Other questions:
  • In a compressional wave the denser the medium is at the compressions the smaller is amplitude?
    14·1 answer
  • A moving object with a decreasing velocity covers distance during
    15·1 answer
  • When a solo eclipse occurs. It is seen in
    9·1 answer
  • Which is most likely an example of pseudoscience?
    5·2 answers
  • [3 points] Question: Consider a pendulum made from a uniform, solid rod of mass M and length L attached to a hoop of mass M and
    8·2 answers
  • Does hot water or cold water boil faster is that repeated observations using models are controlled experiments
    14·1 answer
  • Imagine an aluminum cup of 0.30 liter capacity filled with mercury at 14.0 degrees C. How much mercury, if any, will spill out o
    14·1 answer
  • What type of wave has crests and troughs?
    12·1 answer
  • HELP ASAP!! WILL TRY TO GIVE BRAINLIEST
    15·1 answer
  • A dish is given to you, which contains a blackish-yellow powder. When you move a magnet over it, you are amazed to see black par
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!