No,
To emit light an electron has to jump down to a lower energy level but in an electron is unable to go any lower in ground state.
Answer:
Send a pic of it so i can mark it.
Explanation:
Answer:
Explanation:
1) The time of flight equation for projectile motion can be used here to find total time in air.
t = 2vsin∅ / g
where v is speed, Ф is launch angle
t = 2×4×sin 60 / 9.8
t = 0.71 seconds
2) Distance where it hit the ground is called as range and has the following standard equation
D = v² sin2Ф/g
D = 4²sin 2×60 / 9.8
D = 1.41m
3) Maximum elevation is maximum time reached
h = v² sin²Ф / 2g
h = 4²sin² 60 / 2*9.8
h = 0.61 m
Answer:
110.7 J
Explanation:
Hooke's law is represented by the formula:
F = ke where F is the force in Newton, K is force constant and e is extension in m
work done = 1/2ke² = 1/2 K ( e² - e₀²) and e₀ is the extension at relaxed length
e₀ =0
work done = 0.5 × 82N/m × (2.70 m)² = 110.7 J
Answer:
The velocity will be v1 = 0.58[m/s]
Explanation:
This problem can be solved by the law of conservation of the moment, which explains that the moment of a system remains constant because there are no external forces acting on it.
We have the following initial data:
m1 = mass of the skater = 55 [kg]
m2 = mass of the ball = 3 [kg]
v2 = velocity of the ball = 8 [m/s]
Therefore:
![m_{1}*v_{1}+m_{2}*v_{2}=m_{1}*v_{1}+m_{2}*v_{2}\\(50*0)+(3*0)=(50*v_{1})+(3*8)\\50+3-24=50*v_{1}\\v_{1}= 0.58[m/s]](https://tex.z-dn.net/?f=m_%7B1%7D%2Av_%7B1%7D%2Bm_%7B2%7D%2Av_%7B2%7D%3Dm_%7B1%7D%2Av_%7B1%7D%2Bm_%7B2%7D%2Av_%7B2%7D%5C%5C%2850%2A0%29%2B%283%2A0%29%3D%2850%2Av_%7B1%7D%29%2B%283%2A8%29%5C%5C50%2B3-24%3D50%2Av_%7B1%7D%5C%5Cv_%7B1%7D%3D%200.58%5Bm%2Fs%5D)