Answer:
n= 0.03 moles
Explanation:
Using the ideal gas law:
PV=nRT
nRT=PV
n= PV/RT
n: moles
P: pressure in atm
V= volume in L
R= Avogadro's constant = 0.0821
T= Temperature in K => ºC+273.15
n= (0.925 atm)(0.80 L) / (0.0821)(300.15 K)
n= 0.03 moles
This is a reduction reaction as the oxide(oxygen) is taken away from the metal =]
Since acetic acid or vinegar boils sooner than water and vinegar and water are highly miscible, we cant separate the two by filtration but one way is to use their volatilities. We can boil the solution at 100oC and thats the time, water remains in the container.
The subscripts indicate the number of atoms of the element immediately before it.
Answer:
[Au] = 0.171 M
Explanation:
For this question, we assume the rock is 100 % gold.
First of all, we determine the moles of gold
67.3 g . 1mol/ 196.97g = 0.342 moles
Molar concentration is defined as the moles of solute, contained in 1L of solution.
Our solution volume is 2L.
M = 0.342 mol / 2L = 0.171
Molar concentration, also called molarity of solution is the most typical unit of concentration.