Answer:
The molarity is 2M
Explanation:
First , we calculate the weight of 1 mol of NaCl:
Weight 1mol NaCl= Weight Na + Weight Cl= 23 g+ 35, 5 g= 58, 5 g/mol
58,5 g---1 mol NaCl
233,772 g--------x= (233,772 g x1 mol NaCl)/58,5 g= 4 mol NaCl
<em>A solution molar--> moles of solute in 1 L of solution:</em>
2 L-----4 mol NaCl
1L----x0( 1L x4mol NaCl)/4L =2moles NaCl---> 2 M
<u>Answer:</u> The molarity of Iron (III) chloride is 0.622 M.
<u>Explanation:</u>
Molarity is defined as the number of moles present in one liter of solution. The equation used to calculate molarity of the solution is:

Or,

We are given:
Mass of iron (III) chloride = 1.01 g
Molar mass of iron (III) chloride = 162.2 g/mol
Volume of the solution = 10 mL
Putting values in above equation, we get:

Hence, the molarity of Iron (III) chloride is 0.622 M.
Answer:
Malachite
Explanation:
Malachite is the only listed compound that must contain copper and oxygen.
Copper and oxygen are both elements found on the periodic table. They have the following symbols;
Copper = Cu
Oxygen = O
From the given choices, only option 1 has the symbol Cu and O.
So only malachite contains both copper and oxygen.
Answer:
Molecules make scents. Aromatic ones (That is, containing rings of carbon atoms with delocalised electrons). Some unpleasant smells are due to hydrogen and sulphur groups.
Explanation:
Answer: Skier 1 will have more potential energy because he is higher than skier 2
Explanation: Gravitational potential energy is the energy possessed by a body by virtue of its position or height.
P.E=
m= mass of the body
g= acceleration due to gravity
h= height of body
Thus if the masses of two bodies are same, the one with greater height possess greater potential energy.