Answer:
Time take to deposit Ni is 259.02 sec.
Explanation:
Given:
Current
A
Faraday constant

Molar mass of Ni

Mass of Ni
g
First find the no. moles in Ni solution,
Moles of Ni 
mol
From the below reaction,
⇆ 
Above reaction shows "1 mol of
requires 2 mol of electron to form 1 mol of
"
So for finding charge flow in this reaction we write,

Charge flow
C
For finding time of reaction,

Where
charge flow


sec
Therefore, time take to deposit Ni is 259.02 sec.
Answer:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + 4CO2(g)
Explanation:
When aqueous sugar (sucrose) react with water in the presence of yeast, the following products are obtained as shown in the equation below:
C12H22O11(aq) + H2O(l) —> C2H5OH(aq) + CO2(g)
Now, we shall balance the equation as follow:
There are a total of 24 atoms of H on the left side and 6 atoms on the right side. It can be balance by putting 4 in front of C2H5OH as shown below:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + CO2(g)
There are a total of 9 atoms of C on the right side and 12 atoms on the left side. It can be balance by putting 4 in front of CO2 as shown below:
C12H22O11(aq) + H2O(l) —> 4C2H5OH(aq) + 4CO2(g)
Now the equation is balanced.
One can only hold 2 electrons which only means shell two can hold 8, and for the first eighteen elements shell three can hold a maximum of eight electrons
A small, green frog wearing a strawberry on its head as a hat
Covalent bonds are formed when 2 neutral atoms come together to share a pair of electrons, where each atom contributes one electron each to be shared.
The covalent bond is kept together by the electrostatic attraction between the nuclei of the atoms and the shared pair of electrons.
Covalent bonds are usually formed between non metals with a small difference in their electro negativity.
the correct answer is
A. Neutral atoms coming together to share electrons