Answer:
1. Orbital diagram
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
2. Quantum numbers
- <em>n </em>= 2,
- <em>l</em> = 1,
= 0,
= +1/2
Explanation:
The fill in rule is:
- Follow shell number: from the inner most shell to the outer most shell, our case from shell 1 to 2
- Follow the The Aufbau principle, 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p
- Hunds' rule: Every orbital in a sublevel is singly occupied before any orbital is doubly occupied. All of the electrons in singly occupied orbitals have the same spin (to maximize total spin).
So, the orbital diagram of given element is as below and the sixth electron is marked between " "
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
The quantum number of an electron consists of four number:
- <em>n </em>(shell number, - 1, 2, 3...)
- <em>l</em> (subshell number or orbital number, 0 - orbital <em>s</em>, 1 - orbital <em>p</em>, 2 - orbital <em>d...</em>)
(orbital energy, or "which box the electron is in"). For example, orbital <em>p </em>(<em>l</em> = 1) has 3 "boxes", it was number from -1, 0, 1. Orbital <em>d</em> (<em>l </em>= 2) has 5 "boxes", numbered -2, -1, 0, 1, 2
(spin of electron), either -1/2 or +1/2
In our case, the electron marked with " " has quantum number
- <em>n </em>= 2, shell number 2,
- <em>l</em> = 1, subshell or orbital <em>p,</em>
= 0, 2nd "box" in the range -1, 0, 1
= +1/2, single electron always has +1/2
Explanation:
In first one it should be 2Mg
and in second = 2Mgo
hope it helps....
The formula for the change in Gibbs energy of a solid is:
ΔG = Vm ΔP
where, ΔG is change in Gibbs, Vm is molar volume, ΔP is
change in pressure
ΔP = P(final) – P(initial)
P(final) = 1 atm = 101325 Pa
P(initial) = ρ_water *g *h = (1030 kg/m^3) * 9.8 m/s^2 *
2000 m = 20188000 kg m/s^2 = 20188000 Pa
Vm = (950 kg/m^3) * (1000 mol / 891.48 kg) = 1065.64
mol/m^3
So,
ΔG = (1065.64 mol/m^3) * (101325 Pa - 20188000 Pa)
<span>ΔG = -21405164347 J = -21.4 GJ</span>
Characteristics of pea plants are determined by genes inherited from both the parents.
Option 4.
<h3><u>Explanation:</u></h3>
Gregor Johann Mendel is also called as the father of Genetics. Mendel experimented on the pea plants to determine what happens when different types of pea plants are crossed between themselves and what actually determines the characteristics of the pea plants. After two types of experiments, he came to a conclusion that there are certain substances which he named as '' factors'' which are actually inherited from the parents. He also told that there are certain type of factors which are dominant over the others which he termed as recessive factors. So, the characteristics of the progenies depend on both the factors inherited from both the parents.