They both have two electron shells
<h3>Further explanation</h3>
The period 2 element lies in the second row of the periodic system.
Consists of the elements: lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, and neon
atomic number : 3
electron configuration : [He] 2s¹
atomic number = number of proton=number of electron(in neutral atom)
So Li have 3 protons and 3 electrons
Because it fills the 2s orbital it has 2 shells
atomic number : 8
electron configuration : [He] 2s²2p⁴
So O have 8 protons and 8 electrons
Because it fills the 2s and 2p orbital it has 2 shells
So Lithium (Li) and Oxygen (O) are both have two electron shells
Answer:
copper(I) bromide: CuBr
copper(I) oxide: Cu₂O
copper(II) bromide: CuBr₂
copper(II) oxide: CuO
iron(III) bromide: FeBr₃
iron(III) oxide: Fe₂O₃
lead(IV) bromide: PbBr₄
lead(IV) oxide: PbO₂
I hope this helped you! Brainliest would be greatly appreciated.
Answer:
When writing equation the mass on left side of equation must be equal to the mass on right side. True
Explanation:
The chemical reactions always follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass because total mass is equal on both side of equation.
Fusion occurs constantly on our sun, which produces most of its energy via the nuclear fusion of hydrogen into helium. Neither do fusion reactions produce the large amounts of dangerous radioactive waste that fission reactions do. That's why it's such a dreamy source of energy.
Answer:
Point of neutralization.
Explanation:
Indicators are used in titration experiments to show when the solution's pH is changing. For instance, a common indicator, phenolphthalein, turns pink in basic solutions, while it remains colorless in acidic solutions. The solution would turn a very light shade of pink when the pH reached above 7.