Answer:
Explanation:
Please, find the image with the pictured molecule for this question attached.
The molecule has one oxygen atom (red) covalently bonded to one hydrogen atom (light grey), one nitrogen atom (blue) covalently bonded to two hydrogen atoms (light grey), and two carbon atoms (dark grey) bonded each to two hydrogen atoms (light grey).
<em>Hydrogen bondings</em> are intermolecular bonds (bonds between atoms of two different molecules not between atoms of the same molecule). The hydrogen bonds are attractions between the positive end of one hydrogen atom and the negative end of a small atom of other molecule (N, O, or F).
Since, nitrogen and oxygen are much more electronegative than hydrogen atoms, you conclude that:
- The two hydrogen atoms covalently bonded to the nitrogen atoms have considerably partial positive charge.
- The hydrogen atom covalently bonded to the oxygen atom also has a a relative large partial positive charge.
So, those are three ends of the molecule that can form hydrogen bonds with water molecules.
The hydrogen bondings are only possible when hydrogen is covalently bonded to N, O or F atoms.
<h3>Answer:</h3>
Rubidium (Rb)
<h3>Explanation:</h3>
Ionization Energy is defined as, "the minimum energy required to knock out or remove the valence electron from valence shell of an atom".
<h3>Trends in Periodic table:</h3>
Along Periods:
Ionization Energy increases from left to right along the periods because moving from left to right in the same period the number of protons (atomic number) increases but the number of shells remain constant hence, resulting in strong nuclear interactions and electrons are more attracted to nucleus hence, requires more energy to knock them out.
Along Groups:
Ionization energy decreases from top to bottom along the groups because the number of shells increases and the distance between nucleus and valence electrons also increases along with increase in shielding effect provided by core electrons. Therefore, the valence electrons experience less nuclear attraction and are easily removed.
<h3>Conclusion:</h3>
Given elements belong to same group hence, Rubidium present at the bottom of remaining elements will have least ionization energy due to facts explained in trends of groups above.