Alright! Here are the answers:
1. C. Fluorine is more reactive than nitrogen because fluorine needs only one electron to fill its outermost shell.
2. Aluminum (Al)
Answer:
1. 4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. 6 moles of Cl2
Explanation:
1. The balanced equation for the reaction. This is illustrated below:
4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. Determination of the number of mole of Cl2 produce when 4 moles of FeCl3 react with 4 moles. To obtain the number of mole of Cl2 produced, we must determine which reactant is the limiting reactant.
This is illustrated below:
From the balanced equation above,
4 moles of FeCl3 reacted with 3 moles of O2.
Since lesser amount of O2 (i.e 3 moles) than what was given (i.e 4 moles) is needed to react completely with 4 moles of FeCl3, therefore FeCl3 is the limiting reactant and O2 is the excess reactant.
Finally, we can obtain the number of mole Cl2 produced from the reaction as follow:
Note: the limiting reactant is used as it will produce the maximum yield of the reaction since all of it is used up in the reaction.
From the balanced equation above,
4 moles of FeCl3 will react to produced 6 moles of Cl2.
Every mole is 22.4 L at STP
Answer: Concentration of
in the equilibrium mixture is 0.31 M
Explanation:
Equilibrium concentration of
= 0.729 M
The given balanced equilibrium reaction is,

Initial conc. x 0 0
At eqm. conc. (x-2y) M (y) M (3y) M
The expression for equilibrium constant for this reaction will be:
3y = 0.729 M
y = 0.243 M
![K_c=\frac{[y]\times [3y]^3}{[x-2y]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5By%5D%5Ctimes%20%5B3y%5D%5E3%7D%7B%5Bx-2y%5D%5E2%7D)
Now put all the given values in this expression, we get :



concentration of
in the equilibrium mixture = 
Thus concentration of
in the equilibrium mixture is 0.31 M