The equivalency point is at the point of the titration where the amount of titrant added neutralize the solution. When it’s a strong acid strong base titration, the equivalence point will be 7. When it is a weak acid strong base, the equivalence point it more basic (the exact number depends on what acid and base you use). And when it is a strong acid weak base, the equivalence number is more acid (the exact number depends on what acid and base you use). Hope this helps!
.ANSWER:Copper is a ductile metal
EXPLAIN :This means that it can easily be shaped into pipes and drawn into wires. Copper pipes are lightweight because they can have thin walls. They don't corrode and they can be bent to fit around corners.
For this problem, the solution is exhibiting some colligative properties since the solute in the solution interferes with some of the properties of the solvent. We use equation for the boiling point elevation for this problem. We do as follows:
<span>
ΔT(boiling point) = (Kb)mi
</span>ΔT(boiling point) = (0.512)(1.3/2.0)(2)
ΔT(boiling point) = 0.67 degrees Celsius
<span>
T(boiling point) = 100 + 0.67 = 100.67 degrees Celsius</span>
The balanced chemical reaction is written as:
<span>NaOH + HCl → NaCl + H2O
We are given the amount of sodium hydroxide to be used up in the reaction. This will be the starting point for the calculation.
2.75 x 10^-4 mol NaOH ( 1 mol H2O / 1 mol NaOH ) ( 18.02 g H2O / 1 mol H2O ) = 4.96 x 10^-3 g H2O</span>
Below are the choices:
<span>A. Ni(CO)4(g) ⇌ Ni(s) + 4CO(g)
B. C(s) +2H2(g) ⇌ CH4(g)
C. CaCO3(s) ⇌ CaO(s) + CO2(g)
D. N2(g) + O2(g) ⇌ 2 NO(g)
</span>
The answer is A. Ni(CO)4(g) ⇌ Ni(s) + 4CO(g)
<span>The Kp/Kc ratio is equal to (RT)Δn. K is a constant and the temperature is held constant. So, the Kp/Kc ratio depends on Δn or the difference of moles of gaseous product and reactant. The reaction with the greatest Kp/Kc ratio is Ni(CO)4(g) ⇌ Ni(s) + 4CO(g) with a Δn of 3.</span>