Answer:
Explanation:
Given parameters:
Mass of aluminium oxide = 3.87g
Mass of water = 5.67g
Unknown:
Limiting reactant = ?
Solution:
The limiting reactant is the reactant in short supply in a chemical reaction. We need to first write the chemical equation and convert the masses given to the number of moles.
Using the number of moles, we can ascertain the limiting reactants;
Al₂O₃ + 3H₂O → 2Al(OH)₃
Number of moles;
Number of moles = 
molar mass of Al₂O₃ = (2x27) + 3(16) = 102g/mole
number of moles =
= 0.04mole
molar mass of H₂O = 2(1) + 16 = 18g/mole
number of moles =
= 0.32mole
From the reaction equation;
1 mole of Al₂O₃ reacted with 3 moles of H₂O
0.04 mole of Al₂O₃ will react with 3 x 0.04 mole = 0.12 mole of H₂O
But we were given 0.32 mole of H₂O and this is in excess of amount required.
This shows that Al₂O₃ is the limiting reactant
Answer:
12.09 L
Explanation:
Step 1: Convert 826.1 mmHg to atm
We will use the conversion factor 760 mmHg = 1 atm.
826.1 mmHg × 1 atm/760 mmHg = 1.087 atm
Step 2: Convert 427.8 J to L.atm
We will use the conversion factor 101.3 J = 1 L.atm.
427.8 J × 1 L.atm/101.3 J = 4.223 L.atm
Step 3: Calculate the change in the volume
Assuming the work done (w) is 4.223 L.atm against a pressure (P) of 1.087 atm, the change in the volume is:
w = P × ΔV
ΔV = w/P
ΔV = 4.223 L.atm/1.087 atm = 3.885 L
Step 4: Calculate the final volume
V₂ = V₁ + ΔV
V₂ = 8.20 L + 3.885 L = 12.09 L
Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,

The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get

Therefore, the value of reaction quotient, Q is 0.0625.
Answer:
A). It encouraged them to rely on observation and experimentation to support their conclusions.
Explanation: