Answer:
The volume of the air is 0.662 L
Explanation:
Charles's Law is a gas law that relates the volume and temperature of a certain amount of gas at constant pressure. This law says that for a given sum of gas at a constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases because the temperature is directly related to the energy of the movement they have. the gas molecules. This is represented by the quotient that exists between volume and temperature will always have the same value:

If you have a certain volume of gas V1 that is at a temperature T1 at the beginning of the experiment and several the volume of gas to a new value V2, then the temperature will change to T2, and it will be true:

In this case:
- V1= 0.730 L
- T1= 28 °C= 301 °K (0°C= 273°K)
- V2= ?
- T2= 0°C= 273 °K
Replacing:

Solving:

V2=0.662 L
<u><em>The volume of the air is 0.662 L</em></u>
I think the answer would be trenches but I’m sorry if I’m wrong
The element that gains electrons, becomes reduced.
While the one which loses electrons, becomes oxidized.
In this equation,
CH₃OH + Cr₂O₇²⁻---- --> CH₂O + Cr³⁺.
By balancing the equation, we will get:
3CH₃OH + Cr₂O₇²⁻ + 8H⁺ --> 3CH₂O + 2Cr³⁺ + 7H₂O
Here the oxidation state of Cr changes from +6 to +3 that is it is being reduced thus serving as a oxidizing agent while other element retain their charges.
Here Cr₂O₇²⁻ is reduced while CH₃OH is oxidized.
So Cr₂O₇²⁻ serves as a oxidizing agent, while CH₃OH serves as reducing agent .
Answer:
In pair NaF and H2O both compounds exibit predominantly ionic bonding.