The molarity of a solution is a type of expression of concentration equal to the number of moles solute per liter solution. In this problem, we are given the molarity equal to 0.75 M and a volume equal to 500 milliliters. <span>500 milliliters is equal to 0.5 liters. we multiply M and L to get the number of moles then multiply by the molar mass of NaCl. The answer is 21.92 grams.</span>
Answer:
The van't hoff factor of 0.500m K₂SO₄ will be highest.
Explanation:
Van't Hoff factor was introduced for better understanding of colligative property of a solution.
By definition it is the ratio of actual number of particles or ions or associated molecules formed when a solute is dissolved to the number of particles expected from the mass dissolved.
a) For NaCl the van't Hoff factor is 2
b) For K₂SO₄ the van't Hoff factor is 3 [it will dissociate to give three ions one sulfate ion and two potassium ions]
Out of 0.500m and 0.050m K₂SO₄, the van't hoff factor of 0.500m K₂SO₄ will be more.
c) The van't Hoff factor for glucose is one as it is a non electrolyte and will not dissociate.
I believe the correct response is A. At higher elevations it would take less time to hard boil an egg, because there is less atmospheric pressure.