The radius of the cation is much smaller than the corresponding neutral atom.(b) The radius of an anion is much larger than the corresponding neutral atom.Explanation:The size of the atom or ion is inversely proportional to the nuclear charge experienced by the electrons.(a)The size of the cation is smaller than the size of the corresponding neutral atom. This is because after removal of an electron from the highest principle energy level the nuclear charge experienced by the valence electrons increases resulting in the decrease in size.(b)The size of an anion is larger than the size of the corresponding neutral atom. In an anion, an extra electron is added to the highest principle energy level but the effective nuclear charge pulling the electrons towards the nucleus is still same. The net effective nuclear charge experienced by the electrons present in the outermost shell decrease. Moreover, due to the added electron, the repulsion between the electrons also increases resulting in the increase in size
Make since? i hope this helps
Answer:
0.25M
Explanation:
Since molarity is defined as the amount of substance in 1 liter of a solution, and amount in chemistry refers to the number of moles, molarity can be found using the equation below:
Molarity= number of moles ÷ volume in liters
Given: number of moles= 2
Volume= 8L
∴ Molarity of NaCl
= 2 ÷8
= 0.25M
Answer: c. greater than 7.00
Explanation: The equivalence point of a titration is when all the base is consumed by the acid. When a strong base and a strong acid react, the medium is neutralized because is produced water and salt (which won't suffer hydrolysis). How water's pH is 7, in this type of titration the pH of the equivalence point will be at pH=7. But on titration of a weak acid with a strong base, the reaction of the equivalence point produces water and the conjugate base of the acid. Because the acid is weak, their conjugate base will be strong and will suffer hydrolysis, producing hydroxyl ions, elevating the pH of the water and making it greater than 7.
2Ca + O2 = 2CaO
First, determine which is the excess reactant
72.5 g Ca (1 mol) =1.8089725036
(40.078 g)
65 g O2 (1 mol) =2.0313769611
(15.999g × 2)
Since the ratio of to O2 is 2:1 in the balanced reaction, divide Ca's molar mass by 2 to get 0.9044862518. this isn't necessary because Ca is already obviously the limiting reactant. therefore, O2 is the excess reactant.
Now do the stoichiometry
72.5 g Ca (1 mol Ca) (1 mol O2)
(40.078 g Ca)(2 mol Ca)(31.998g O2)
=0.0282669621 g of O2 left over