What exactly is the question you are asking?
The resistance of the heating element is 21.61 Ω
Given
The power dissipated = 1500 W
Voltage = 180 V
We know that
Power = Voltage * Current
⇒ Power / Voltage = Current
⇒ 1500 W/180 V = Current
⇒ 8.33 A = Current
In order to calculate the resistance of the heating element. We Have to apply the formula
Power = (Current)^2 * Resistance
⇒ Resistance = Power / (Current)^2
⇒ Resistance = 1500 W/ (8.33) ^2
⇒ Resistance = 21.61 Ω
Hence the resistance of the heating element is 21.61 Ω
Learn more about resistance here: -
“ brainly.com/question/17330679 “
#SPJ4
Answer is: Move from the negatively charged body to the positively charged body.
The electron (symbol: e⁻) is a subatomic particle whose electric charge is negative one elementary charge.
The proton (p⁺) is subatomic particle with a positive electric charge of +1e elementary charge.
Opposite charges (positive and negative) attract one another.
The negatively charged body has extra electrons, more electrons than protons.
The positively charged body has less electrons than protons.
Correct Answer: option <span>(1) Mn(s)
Reason:
The </span><span>spontaneity of electrochemical cell, depends on the it's Eo value. Electrochemical cells with positve Eo are spontanous and vice-versa.
</span>
In present case, the Eo of half-cell of interest are as follows:
Eo Zn2+/Zn = <span>-0.763v
</span>Eo Mg2+/Mg = 2.37v
Eo Mn2+/Mn = -1.18v
Therefore, Eo cell (with Zn as one of the half-cell) = Eo Zn2+/Zn - Eo Mn2+/Mn
= -0.763 - (-1.18)
= 0.417v
On other hand, Eo cell (with Mg as one of the half-cell) = Eo Mg2+/Zn - Eo Mn2+/Mn
= -2.37 - (-1.18)
= -1.19v
Thus, Mn(s) <span>metal will spontaneously react with Zn2+(aq), but will not spontaneously react with Mg2+(aq)</span>