Answer:
35.0 kPa
Explanation:
As pressure decreases, the volume of a gas increases at a given temperature., so since the balloon got bigger, the new pressure must be less than 103kPa
Assuming the temperature does not change, use Boyles Law
P1V1 = P2V2
(103kPa) (1750L) = P2 (5150L)
P2 = (103)(1750) / 5150
Same, I cannot answer the question. Try asking a high school student
This problem is providing information about the mass of a tennis ball, 56.6 g (0.0566 kg) and asks for the velocity it will have to equal the wavelength of green light, which is 5400 A or 540 nm (5.4x10⁻⁷ m). Thus, after doing the math, the result is 2.17x10⁻²⁶ m/s.
<h3>
Broglie's wavelength:</h3>
In this case, we recall the formula of the Broglie's wavelength as shown below:
Whereas lambda is the wavelength, h is the Planck's constant, m the mass and v the speed; thus, we solve for the speed according to the question:
<h3>Calculations:</h3>
Then, we just plug in the numbers we were given to get the answer:
Learn more about Broglie's wavelength: brainly.com/question/5440536
Answer:
<u>M</u><u>eter,</u><u> </u><u>kilometer </u><u>&</u><u> </u><u>inch </u>- used to measure length or distance.
Answer: 0.8M
Explanation:
Given that,
Amount of moles of NaCl (n) = ?
Mass of NaCl in grams = 1.40 g
For molar mass of NaCl, use the molar masses:
Sodium, Na = 23g;
Chlorine, Cl = 35.5g
NaCl = (23g + 35.5g)
= 58.5g/mol
Since, amount of moles = mass in grams / molar mass
n = 1.40g / 58.5g/mol
n = 0.024 mole
Now, given that:
Amount of moles of NaCl (n) = 0.024
Volume of NaCl solution (v) = 30.0mL
[Convert 30.0mL to liters
If 1000 mL = 1L
30.0mL = 30.0/1000 = 0.03L]
Concentration of NaCl solution (c) = ?
Since concentration (c) is obtained by dividing the amount of solute dissolved by the volume of solvent, hence
c = n / v
c = 0.024 mole / 0.03 L
c = 0.8 M (0.8M means concentration is in moles per litres)
Thus, the concentration of the solution is 0.8M