Answer:
According to Le-chatelier principle, equilibrium will shift towards left to minimize concentration of
and keep same equilibrium constant
Explanation:
In this buffer following equilibrium exists -

So,
is involved in the above equilibrium.
When a strong base is added to this buffer, then concentration of
increases. Hence, according to Le-chatelier principle, above equilibrium will shift towards left to minimize concentration of
and keep same equilibrium constant.
Therefore excess amount of
combines with
to produce ammonia and water. So, effect of addition of strong base on pH of buffer gets minimized.
I’d say market and distribution would be the next step
Answer:
10 molecules of NH₃.
Explanation:
N₂ + 3H₂ --> 2NH₃
As the N₂ supply is unlimited, what we need to do to solve this problem is <u>convert molecules of H₂ into molecules of NH₃</u>. To do so we use the <em>stoichiometric coefficients</em> of the balanced reaction:
- 15 molecules H₂ *
= 10 molecules NH₃
10 NH₃ molecules could be prepared from 15 molecules of H₂ and unlimited N₂.
<span>Divide the number of grams present in the sample by copper's gram atomic weight to find the number of gram atomic weights present. Then multiply that result by Avogadro's Number: 6.022137 x 10^23 atoms/gram atomic weight.1,200 g/(63.54 g/gram atomic weight) ? 18.885741 gram-atomic weights. Hope this helps. </span>
He made a new approach when he discovered magnetism and electricity.