Answer is: dispersion forces.
The London dispersion force is the weakest intermolecular force.
Dispersion force is also called an induced dipole-induced dipole attraction.
The London dispersion force (intermolecular force) is a temporary attractive force between molecules.
The dipole beetween iodine and bromine is weak.
Answer:
- % Cobalt (II) Nitrate = 30.62%
Explanation:
To calculate mass percent, first we need to <u>calculate the total mass of the mixture</u>:
- Mass Water ⇒ 0.350 kg Water = 350 g water
- Mass Ammonia⇒We use ammonia's molar mass⇒5.4 mol * 17 g/mol = 91.8 g
- Mass cobalt (II) nitrate ⇒ 195.0 g
Total Mass = Mass Water + Mass Ammonia + Mass Cobalt Nitrate
- Total Mass = 350 g+ 91.8 g+ 195 g = 636.8 g
To calculate each component's mass percent, we divide its mass by the total mass and multiply by 100:
- % Water ⇒ 350/636.8 * 100% = 54.96%
- % Ammonia ⇒ 91.8/636.8 * 100% = 0.14%
- % Cobalt (II) Nitrate ⇒ 195/636.8 * 100% = 30.62%
Answer:
12.99
Explanation:
<em>A chemist dissolves 716. mg of pure potassium hydroxide in enough water to make up 130. mL of solution. Calculate the pH of the solution. (The temperature of the solution is 25 °C.) Be sure your answer has the correct number of significant digits.</em>
Step 1: Given data
- Mass of KOH: 716. mg (0.716 g)
- Volume of the solution: 130. mL (0.130 L)
Step 2: Calculate the moles corresponding to 0.716 g of KOH
The molar mass of KOH is 56.11 g/mol.
0.716 g × 1 mol/56.11 g = 0.0128 mol
Step 3: Calculate the molar concentration of KOH
[KOH] = 0.0128 mol/0.130 L = 0.0985 M
Step 4: Write the ionization reaction of KOH
KOH(aq) ⇒ K⁺(aq) + OH⁻(aq)
The molar ratio of KOH to OH⁻is 1:1. Then, [OH⁻] = 0.0985 M
Step 5: Calculate the pOH
We will use the following expression.
pOH = -log [OH⁻] = -log 0.0985 = 1.01
Step 6: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -1.01 = 12.99
Answer:
A
Explanation:
B describes a strong base, C just isn't true there are only 7 strong acids, D describes a weak acid
Answer:
HA + KOH → KA + H₂O
Explanation:
The unknown solid acid in water can release its proton as this:
HA + H₂O → H₃O⁺ + A⁻
As we have the anion A⁻, when it bonded to the cation K⁺, salt can be generated, so the reaction of HA and KOH must be a neutralization one, where you form water and a salt
HA + KOH → KA + H₂O
It is a neutralization reaction because H⁺ from the acid and OH⁻ from the base can be neutralized as water