Answer:
Chemical Change
Explanation:
It changes color and produces vapor when the foil is added to the solution.
Answer:
The common ion will be di-positive ion.
Explanation:
The ionization energy is defined as the amount of energy needed for removal of most loosely bound electron from an isolated atom in gaseous state.
The low ionization energy shows that the atom is able to give electron easily as after losing electron it may attain noble gas configuration or half filled stability.
Here the first and second ionization energy, both are low suggesting that the element is ready to give two electrons easily to form a di-positive ion however the third ionization energy is high which shows that it will not form tri-positive ion commonly.
Answer:
Chromosomes are structures within cells that contain a person's genes.
Explanation:
Genes are segments of deoxyribonucleic acid (DNA) that contain the code for a specific protein that functions in one or more types of cells in the body. Chromosomes are structures within cells that contain a person's genes. Genes are contained in chromosomes, which are in the cell nucleus.
When comparing single bonds between atoms of comparable types, the stronger the bond is, the bigger the atom, the weaker it is.
The length of the X-H bond lengthens while the strength of the bond shortens with increasing halogen size (F-H strongest, I-H weakest). When comparing single bonds between atoms of similar sorts, the larger the atom, the weaker the bond. It can be explained by the fact that less energy is required to break the bond the bigger the atom's atomic size. The force of attraction from the nucleus to the outermost orbit will be less for iodine since it has a larger atom than the other elements in the group.
Learn more about single bonds here-
brainly.com/question/16626126
#SPJ4
Mole<span>: the amount of a substance that contains 6.02 x </span>10<span>. 23 respective particles of that substance. Avogadro's number: 6.02 x </span>10<span>. 23. Molar Mass: the mass of one </span>mole<span> of an element. CONVERSION FACTORS: 1 </span>mole<span> = 6.02 x </span>10<span>. 23 </span>atoms<span> 1 </span>mole<span> = </span>atomic<span> mass (g). Try: 1. How </span>many atoms<span> are in 6.5</span>moles<span> of zinc</span>