Answer:
Molecular formula naphthalene → C₁₀H₈
Empirical formula naphthalene → C₅H₄
Explanation:
Centesimal composition means that in 100 g of compound we have x g of the element. Therefore in 100 g of naphthalene we have:
93.7 g of C
6.3 g of H
Let's make a rule of three:
In 100 g of naphthalene we have 93.7 g of C and 6.3 g of H
In 128 g of naphthalene we would have:
128 . 93.7 / 100 = 120 g of C
128. 6.3 / 100 = 8 g of H
We convert the mass to moles, by molar mass:
120 g . 1mol / 12 g = 10 moles C
8 g . 1mol/ 1g = 8 moles H
Molecular formula naphthalene → C₁₀H₈
Empirical formula naphthalene → C₅H₄
(The sub-index of each element is divided by the largest possible number)
6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
It is an area that is covered in grasses and wildflowers that receives enough rainfall to support the grassland but not the growth of trees.
Explanation:
Answer:
They have properties of both metals and nonmetals
Explanation:
- Elements in the periodic table may be divided into Metals, non-metals, and metalloids.
- Metals are the elements that react by losing electrons to form stable positively charged ions known as cations. Examples are group 1, 2, and 3 elements together with transition elements.
- Non-metals are those elements that react by gaining electrons to form stable negatively charged ions called anions. Examples include oxygen, carbon, sulfur, etc.
- Metalloids, on the other hand, are elements that have both metallic and non-metallic properties.
- Metalloids occur between metals and non-metals in the periodic table. Examples include Boron and silicon among others.