The reducing agent can approach the carbonyl face of camphor by forming a one carbon bridge (known as an exo attack) or a two carbon bridge (termed endo).
The two resultant stereoisomers are known as isoborneol and borneol (from exo attack) (from endo attack). Gas chromatography (GC) analysis may be used to calculate the ratio of each isomeric alcohol in the mixture. Unfortunately, IR analysis does not permit this.
The stereochemistry of the reaction is regulated in stiff cyclic compounds like camphor and norcamphor by protecting one side of the carbonyl group from the reagent's assault. The hydrogen atom is added to the endo side, creating the exo alcohol isoborneol, while the methyl groups on the one-carbon bridge of camphor screen the approach of the hydride from the "top" or exo side of the two-carbon bridge. You will be asked to guess the main isomeric alcohol created by the norcamphor hydride reduction later in the lab report.
To view more about rational reaction, refer to:
brainly.com/question/20308523
#SPJ4
<span>the mass should increase by exactly the 5g you added. </span>
C, because liquids as gas can move on there own at different points but solids are locked in place and do not move past one another like liquids and gases do.