Answer:
Explanation:
The amplitude of the oscillation under SHM will be .5 m and the equation of
SHM can be written as follows
x = .5 sin(ωt + π/2) , here the initial phase is π/2 because when t = 0 , x = A ( amplitude) , ω is angular frequency.
x = .5 cosωt
given , when t = .2 s , x = .35 m
.35 = .5 cos ωt
ωt = .79
ω = .79 / .20
= 3.95 rad /s
period of oscillation
T = 2π / ω
= 2 x 3.14 / 3.95
= 1.6 s
b )
ω = 
ω² = k / m
k = ω² x m
= 3.95² x .6
= 9.36 N/s
c )
v = ω
At t = .2 , x = .35
v = 3.95 
= 3.95 x .357
= 1.41 m/ s
d )
Acceleration at x
a = ω² x
= 3.95 x .35
= 1.3825 m s⁻²
Question
What is the length of the pipe?
Answer:
(a) 0.52m
(b) f2=640 Hz and f3=960 Hz
(c) 352.9 Hz
Explanation:
For an open pipe, the velocity is given by

Making L the subject then

Where f is the frequency, L is the length, n is harmonic number, v is velocity
Substituting 1 for n, 320 Hz for f and 331 m/s for v then

(b)
The next two harmonics is given by
f2=2fi
f3=3fi
f2=3*320=640 Hz
f3=3*320=960 Hz
Alternatively,
and 

(c)
When v=367 m/s then

D, I believe would be the first minus the second vector.
To solve this I named the first vector as A and the second as B.
So... vector A - B = resultant
or A + (-B)
A negative indicates a direction of a vector so if we flip the direction the other way we have the first vector (A) pointing vertically upwards and then vector B pointing to the west.
Now we have to use the head to tail method, meaning that the head of the first vector has to connect with the tail of the other vector added.
So we should have something like this
(-B) < - - - - ^
|
| (A)
|
To add these two vectors, technically A - B, draw a line from the tail of A to the head of -B which would look like image D.
Hope this helped!
Answer:
Approximately
(assuming that the acceleration due to gravity is
.)
Explanation:
Let
denote the first piston's contact area with the fluid. Let
denote the second piston's contact area with the fluid.
Similarly, let
and
denote the size of the force on the two pistons. Since the person is placing all her weight on the first piston:
.
Since both pistons fit into cylinders, the two contact surfaces must be circles. Keep in mind that the area of a square is equal to
times its radius, squared:
.
.
By Pascal's Law, the pressure on the two pistons should be the same. Pressure is the size of normal force per unit area:
.
For the pressures on the two pistons to match:
.
,
, and
have all been found. The question is asking for
. Rearrange this equation to obtain:
.
Evaluate this expression to obtain the value of
, which represents the force on the piston with the larger diameter:
.
Answer:
d. causes the cell to make more viruses
Explanation:
Viruses depend on the host cells that they infect to reproduce. When found outside of host cells, viruses exist as a protein coat or capsid, sometimes enclosed within a membrane. The capsid encloses either DNA or RNA which codes for the virus elements.