Answer:
Explanation:
Given a parallel plate capacitor of
Area=A
Distance apart =d
Potential difference, =V
If the distance is reduce to d/2
What is p.d
We know that
Q=CV
Then,
V=Q/C
Then this shows that the voltage is inversely proportional to the capacitance
Therefore,
V∝1/C
So, VC=K
Now, the capacitance of a parallel plate capacitor is given as
C= εA/d
When the distance apart is d
Then,
C1=εA/d
When the distance is half d/2
C2= εA/(d/2)
C2= 2εA/d
Then, applying
VC=K
V1 is voltage of the full capacitor V1=V
V2 is the required voltage let say V'
Then,
V1C1=V2C2
V × εA/d=V' × 2εA/d
VεA/d = 2V'εA/d
Then the εA/d cancels on both sides and remains
V=2V'
Then, V'=V/2
The potential difference is half when the distance between the parallel plate capacitor was reduce to d/2
The speed of sound in fresh water is 1482m/s.
It says ocean floor, so we should a little bit more accurate, and use the fact that the speed of sound in salt water (that has no bubbles) is 1560m/s.
speed = distance / time
Therefore Distance = speed x time = 1560 x 3.3 = 5158m
The sonar wave is sent out by the boat, reflected off the seafloor, and then is received back at the boat on the surface. So the distance 5148m is the distance from the boat to the sea bottom and then back up to the boat again.
So the depth of the water is half this distance Depth of water = 5148/2=2574m
Waves can be described using a number of different characteristics of a wave. Wavelength and frequency are two such characteristics. The relationship between wavelength and frequency is that the frequency of a wave multiplied by its wavelength gives the speed of the wave
The answer will be b but check it by yourself we are humans