1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
3 years ago
13

A simple hydraulic lift is made by fitting a piston attached to a handle into a 3.0-cm diameter cylinder. The cylinder is connec

ted to a larger cylinder with a 24-cm diameter. If a 50-kg woman puts all her weight on the handle of the smaller piston, what weight could the other piston lift?
Physics
1 answer:
stiv31 [10]3 years ago
6 0

Answer:

Approximately 3.1 \times 10^4 \; \rm N (assuming that the acceleration due to gravity is g = 9.81\; \rm kg \cdot N^{-1}.)

Explanation:

Let A_1 denote the first piston's contact area with the fluid. Let A_2 denote the second piston's contact area with the fluid.

Similarly, let F_1 and F_2 denote the size of the force on the two pistons. Since the person is placing all her weight on the first piston:

F_1 = W = m \cdot g = 50\; \rm kg \times 9.81 \; \rm kg \cdot N^{-1} =495\; \rm N.  

Since both pistons fit into cylinders, the two contact surfaces must be circles. Keep in mind that the area of a square is equal to \pi times its radius, squared:

  • \displaystyle A_1 = \pi \times \left(\frac{1}{2} \times 3.0\right)^2 = 2.25\, \pi\;\rm cm^{2}.
  • \displaystyle A_2 = \pi \times \left(\frac{1}{2} \times 24\right)^2 = 144\, \pi\;\rm cm^{2}.

By Pascal's Law, the pressure on the two pistons should be the same. Pressure is the size of normal force per unit area:

\displaystyle P = \frac{F}{A}.

For the pressures on the two pistons to match:

\displaystyle \frac{F_1}{A_1} = \frac{F_2}{A_2}.

F_1, A_1, and A_2 have all been found. The question is asking for F_2. Rearrange this equation to obtain:

\displaystyle F_2 = \frac{F_1}{A_1} \cdot A_2 = F_1 \cdot \frac{A_2}{A_1}.

Evaluate this expression to obtain the value of F_2, which represents the force on the piston with the larger diameter:

\begin{aligned}F_2 &= F_1 \cdot \frac{A_2}{A_1} \\ &= 495\; \rm N \times \frac{2.25\, \pi\; \rm cm^2}{144\, \pi \; \rm cm^2} \approx 3.1 \times 10^4\; \rm N\end{aligned}.

You might be interested in
A 0.5-kilogram apple falls from a height of 2 meters to 1.50 meters. Ignoring frictional effects, what is the kinetic energy of
spin [16.1K]

The  final kinetic energy of the ball is 2.45 J

Explanation:

We can solve this problem by using the law of conservation of energy.

In absence of frictional effect, the mechanical energy of the apple must be conserved during the fall. So we can write:

U_i +K_i = U_f + K_f

where :

U_i is the initial potential energy, at the top

K_i is the initial kinetic energy, at the top

U_f is the final potential energy, at the bottom

K_f is the final kinetic energy, at the bottom

By explicing the potential energy, we can rewrite the equation as:

mgh_i + K_i = mgh_f + K_f

where:

m = 0.5 kg is the mass of the apple

g=9.8 m/s^2 is the acceleration of gravity

h_i = 2 m is the initial height

h_f=1.50 m is the final height

The initial kinetic energy is zero, since the ball starts from rest:

K_i = 0

Therefore we can solve the equation for K_f, the final kinetic energy of the ball:

K_f = mg(h_i-h_f)=(0.5)(9.8)(2-1.50)=2.45 J

Learn more about kinetic energy and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647  

brainly.com/question/10770261  

#LearnwithBrainly

3 0
4 years ago
Read 2 more answers
Exoplanets (planets outside our solar system) are an active area of modern research. Suppose astronomers find such a planet that
Leno4ka [110]

Answer:

8.829 m/s²

Explanation:

M = Mass of Earth

m = Mass of Exoplanet

g_e = Acceleration due to gravity on Earth = 9.81 m/s²

g = Acceleration due to gravity on Exoplanet

m=M-0.1M\\\Rightarrow m=0.9M

g_e=G\frac{M}{r^2}

g=G\frac{0.9M}{r^2}

Dividing the equations we get

\frac{g}{g_e}=\frac{G\frac{0.9M}{r^2}}{G\frac{M}{r^2}}\\\Rightarrow \frac{g}{g_e}=0.9\\\Rightarrow g=0.9g_e\\\Rightarrow g=0.9\times 9.81\\\Rightarrow g=8.829\ m/s^2

Acceleration due to gravity on the surface of the Exoplanet is 8.829 m/s²

3 0
3 years ago
A student hangs a weight on a newtonmeter. The energy currently stored in the spring in the newton meter is 0.045N. The student
castortr0y [4]

Answer:

5x10^-3

Explanation:

Hooke's Law states that the force needed to compress or extend a spring is directly proportional to the distance you stretch it.

Hooke's Law can be represented as

<h3> F = kx, </h3>

<em>where F is the force </em>

<em>            k is the spring constant</em>

<em>            x is the extension of the material </em>

<em />

Plug values in the equation

Step 1 find the original extension

0.045 = (400)x

x = 1.125x 10^-4 m d

Step 2 find the new extension

0.045+2 = 400(x)

2.045 = 400x

x = 5.1125x10^-3

Step 3 subtract the new extension with original

Total extension of the spring =  5.1125x10^-3 - 1.125x 10^-4 m = 5x10^-3

8 0
3 years ago
At high elevations or high latitudes, some of the water that falls on land does not immediately soak in , run off, evaporate or
LUCKY_DIMON [66]

Answer:

The water is stored in ice sheets and as snow

Explanation:

Temperature reduces with an increase in altitudes. The standard laps rate is 6.5°C per 1,000 m gained in elevation

At very high elevations, therefore,  the air is usually very cold such that when an elevation of 4,500 meters is reached at the equator, it is possible to observe snowfall and the water remain temporarily stored on the surface of the mountain as ice and snow

7 0
3 years ago
Which best describes two counteracting forces on an object
Natali5045456 [20]

The correct answer is B two children pulling apart a wishbone

Let me know if you have any questions, and have a nice day!

6 0
3 years ago
Read 2 more answers
Other questions:
  • Why are the element from period 2 grouped together
    5·1 answer
  • It has been argued that power plants should make use of off-peak hours to generate mechanical energy and store it until it is ne
    11·1 answer
  • A 25-kg child sits at the top of a 4-meter slide. After sliding down, the child is traveling at 5 m/s. How much PE does he start
    15·1 answer
  • Qué es el espectro electromagnético
    13·1 answer
  • Who was the first person to walk on the moon ?
    6·2 answers
  • What inertia is present in a stretched rubber?​
    12·1 answer
  • Bohr found experimental evidence for his atomic model by studying
    13·2 answers
  • WILL GIVE BRAINLIEST!!!!!!!!!!!!!!!!!!
    11·1 answer
  • A vehicle of mass 100kg has a kinetic energy of 5000 J at an instant. The velocity at that instant is​
    7·2 answers
  • Looking at the wave diagram which best describes the wave
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!